Abstract

Optically switchable Ultra-Wideband (UWB) monocycle and doublet pulse generation using an optically reconfigurable photonic microwave delay-line filter is proposed and demonstrated. The microwave filter can be reconfigured as a two- or three-tap microwave filter with coefficients of (1, -1) or (1, -2, 1). The function of the two- or three-tap microwave filter is equivalent to an operation of a first- or second-order difference, which can be approximated as a first- or second-order derivative. When a Gaussian pulse is inputted to the two- or three-tap microwave delay-line filter, a Gaussian monocycle or doublet pulse is generated. The proposed photonic microwave delay-line filter is implemented using a polarization modulator (PolM), a length of polarization maintaining fiber (PMF), and a balanced photo-detector (BPD). In the experiment, Gaussian monocycle and doublet pulses with a fractional bandwidth of about 170% and 130% are generated. The switchability of the proposed UWB pulse generator in pulse shape and polarity is also experimentally demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
    [CrossRef]
  2. R. J. Fontana, "Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology," IEEE Trans. Microwave Theory Tech. 52, 2087-2104 (2004).
    [CrossRef]
  3. M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in Communication Engineering (Wiley, 2004)
    [CrossRef]
  4. L. Zhu, S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett. 15, 796-798 (2005).
    [CrossRef]
  5. T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique," IEEE International Topical Meeting on Microwave Photonics - Technical Digest, MWP’04 48-51 (2004).
  6. Q. Wang and J. P. Yao, "UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006)
    [CrossRef]
  7. Q. Wang, F. Zeng, S. Blais, and J. P. Yao, "Optical UWB monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  8. F. Zeng and J. P. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
    [CrossRef]
  9. C. Wang, F. Zeng, and J. P. Yao, "All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  10. I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microw. Wirel. Compon. Lett. 15, 226-228 (2005).
    [CrossRef]
  11. F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
    [CrossRef]
  12. J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultra-Wideband signals," J. Lightwave Technol. 25, no. 11 (2007).
  13. J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems" Proc. SPIE 5577, 133-143 (2004).
    [CrossRef]

2007 (2)

C. Wang, F. Zeng, and J. P. Yao, "All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultra-Wideband signals," J. Lightwave Technol. 25, no. 11 (2007).

2006 (4)

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
[CrossRef]

Q. Wang and J. P. Yao, "UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006)
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, "Optical UWB monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

2005 (2)

L. Zhu, S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett. 15, 796-798 (2005).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microw. Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

2004 (2)

R. J. Fontana, "Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology," IEEE Trans. Microwave Theory Tech. 52, 2087-2104 (2004).
[CrossRef]

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems" Proc. SPIE 5577, 133-143 (2004).
[CrossRef]

2003 (1)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Electron. Lett. (1)

Q. Wang and J. P. Yao, "UWB doublet generation using a nonlinearly-biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006)
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (2)

L. Zhu, S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett. 15, 796-798 (2005).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microw. Wirel. Compon. Lett. 15, 226-228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

F. Zeng and J. P. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett. 18, 2062- 2064 (2006).
[CrossRef]

F. Zeng and J. P. Yao, "An approach to ultrawideband pulse generation and distribution over optical fiber," IEEE Photon. Technol. Lett. 18, 823-825 (2006).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, "All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. J. Fontana, "Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Technology," IEEE Trans. Microwave Theory Tech. 52, 2087-2104 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. P. Yao, F. Zeng, and Q. Wang, "Photonic generation of Ultra-Wideband signals," J. Lightwave Technol. 25, no. 11 (2007).

Opt. Lett. (1)

Proc. SPIE (1)

J. D. Bull, N. A. F. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40 GHz electro-optic polarization modulator for fiber optic communications systems" Proc. SPIE 5577, 133-143 (2004).
[CrossRef]

Other (2)

M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in Communication Engineering (Wiley, 2004)
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, "Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique," IEEE International Topical Meeting on Microwave Photonics - Technical Digest, MWP’04 48-51 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The schematic diagram of an N-tap photonic microwave delay-line filter

Fig. 2.
Fig. 2.

UWB monocycle and doublet pulse generation using a reconfigurable microwave photonic delay-line filter; LD: laser diode, PC: polarization controller, PolM: polarization modulator, PMF: polarization maintaining fiber, BPD: balanced photo-detector.

Fig. 3.
Fig. 3.

The frequency response of microwave filter configured as a two- or three-tap photonic microwave delay-line filter; (a) two-tap filter with coefficients of (1, -1) ; (b) three-tap filter with coefficients of (1, -2, 1); solid line: experiment result; dashed line: simulation result.

Fig. 4.
Fig. 4.

The waveform of the generated Gaussian monocycle and doublet pulses; (a) Gaussian monocycle; (b) Gaussian doublet.

Fig. 5.
Fig. 5.

The electrical spectra of the generated Gaussian monocycle and doublet pulses; (a) Gaussian monocycle; (b) Gaussian doublet.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H N ( ω ) = k = 0 N 1 a k e jkωτ
H 2 ( ω ) = 2 j sin ωτ 2 e j ωτ 2
H 3 ( ω ) = [ H 2 ( ω ) ] 2 = 4 sin 2 ωτ 2 e jωτ
H 2 ( ω ) jωτ e j ωτ 2
H 3 ( ω ) ω 2 τ 2 e jωτ

Metrics