C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[Crossref]
A. Battula and S. C. Chen, “Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels,” Appl. Phys. Lett. 89, 131113 (2006).
[Crossref]
J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express, 14, 5664 (2006).
[Crossref]
[PubMed]
M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
[Crossref]
[PubMed]
C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921 (2005).
[Crossref]
[PubMed]
A. Z. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945 (2005).
[Crossref]
[PubMed]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2004).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, “Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method,” Appl. Phys. Lett. 85, 654 (2004).
[Crossref]
K. Nishio and H. Masuda, “Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium,” Electrochem. Solid-State Lett. 7, H27 (2004).
[Crossref]
F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234 (2004).
[Crossref]
[PubMed]
D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
[Crossref]
[PubMed]
H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref]
[PubMed]
H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664 (2004).
[Crossref]
[PubMed]
J. O’Hara, R. D. Averitt, and A. J. Taylor, “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397 (2004).
[Crossref]
[PubMed]
X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003).
[Crossref]
[PubMed]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401 (1950).
H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163 (1944).
[Crossref]
A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
A. Battula and S. C. Chen, “Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels,” Appl. Phys. Lett. 89, 131113 (2006).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163 (1944).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401 (1950).
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
A. Battula and S. C. Chen, “Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels,” Appl. Phys. Lett. 89, 131113 (2006).
[Crossref]
H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[Crossref]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2004).
[Crossref]
[PubMed]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921 (2005).
[Crossref]
[PubMed]
M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
[Crossref]
[PubMed]
F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003).
[Crossref]
[PubMed]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, “Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method,” Appl. Phys. Lett. 85, 654 (2004).
[Crossref]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref]
[PubMed]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2004).
[Crossref]
[PubMed]
K. Nishio and H. Masuda, “Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium,” Electrochem. Solid-State Lett. 7, H27 (2004).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921 (2005).
[Crossref]
[PubMed]
M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
[Crossref]
[PubMed]
F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
K. Nishio and H. Masuda, “Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium,” Electrochem. Solid-State Lett. 7, H27 (2004).
[Crossref]
E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2004).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[Crossref]
M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
[Crossref]
[PubMed]
C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921 (2005).
[Crossref]
[PubMed]
H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref]
[PubMed]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, “Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method,” Appl. Phys. Lett. 85, 654 (2004).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, “Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method,” Appl. Phys. Lett. 85, 654 (2004).
[Crossref]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
A. Z. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945 (2005).
[Crossref]
[PubMed]
A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]
D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
[Crossref]
[PubMed]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
D. Korobkin, Y. A. Urzhumov, B. Neuner III, C. Zorman, Z. Zhang, I. D. Mayergoyz, and G. Shvets, “Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritions,” Appl. Phys. A, 88, 605 (2007).
[Crossref]
A. Battula and S. C. Chen, “Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels,” Appl. Phys. Lett. 89, 131113 (2006).
[Crossref]
K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85, 4316 (2004).
[Crossref]
A. K. Azad, Y. Zhao, and W. Zhang, “Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array,” Appl. Phys. Lett. 86, 141102 (2005).
[Crossref]
J. A. Matteo, D. P. Fromm, Y. Yue, P. J. Schuck, W. E. Moerner, and L. Hesselink, “Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures,” Appl. Phys. Lett. 85, 648 (2004).
[Crossref]
Y. H. Ye, D. Y. Jeong, and Q. M. Zhang, “Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride-trifluoroethylene) copolymer films using a stencil mask method,” Appl. Phys. Lett. 85, 654 (2004).
[Crossref]
Q-j. Wang, J-q. Ki, C-p. Huang, C. Zhang, and Y-y Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87, 091105 (2005).
[Crossref]
F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742 (2004).
[Crossref]
A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81, 4327 (2002).
[Crossref]
K. Nishio and H. Masuda, “Dependence of optical properties of ordered metal hole array on refractive index of surrounding medium,” Electrochem. Solid-State Lett. 7, H27 (2004).
[Crossref]
T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 351, 667, 1998.
[Crossref]
C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 445, 39 (2007).
[Crossref]
H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629 (2004).
[Crossref]
[PubMed]
H. Cao and A. Nahata, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664 (2004).
[Crossref]
[PubMed]
J. O’Hara, R. D. Averitt, and A. J. Taylor, “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397 (2004).
[Crossref]
[PubMed]
A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, and T. Niemi, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234 (2004).
[Crossref]
[PubMed]
C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921 (2005).
[Crossref]
[PubMed]
J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express, 14, 5664 (2006).
[Crossref]
[PubMed]
A. Z. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945 (2005).
[Crossref]
[PubMed]
D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
[Crossref]
[PubMed]
M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005).
[Crossref]
[PubMed]
X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320 (2003).
[Crossref]
[PubMed]
C. J. Bouwkamp, “On the Diffraction of Electromagnetic Waves by Small Circular Disks and Holes,” Philips Res. Rep. 5, 401 (1950).
H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photonics Nanostruct. Fundam. Appl. 4, 123 (2006).
[Crossref]
H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163 (1944).
[Crossref]
J. Gómez Rivas, C. Schotsch, P. H. Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306 (2003).
[Crossref]
C. Janke, J. Gómez Rivas, C. Schotsch, L. Beckmann, P. H. Bolivar, and H. Kurz, “Optimization of enhanced terahertz transmission through arrays of subwavelength apertures,” Phys. Rev. B 69, 205314 (2004).
[Crossref]
Q. Cao and P. Lalanne, “Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 88, 057403 (2002).
[Crossref]
[PubMed]
R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays,” Phys. Rev. Lett. 92, 037401 (2004).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, “Enhanced Infrared Transmission through Subwavelength Coaxial Metallic Arrays,” Phys. Rev. Lett. 94, 033902 (2005).
[Crossref]
[PubMed]
K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Phys. Rev. Lett. 92, 183901 (2004).
[Crossref]
[PubMed]
J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305, 847 (2004).
[Crossref]
[PubMed]
E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
COMSOL 3.2a Reference Manual, version 3.2 ed. (Comsol AB, 2005).