Abstract

We present a novel fiber-based near-field optical head consisting of a straw-shaped writing probe and a flat gap sensing probe. The straw-shaped probe with a C-aperture on the end face exhibits enhanced transmission by a factor of 3 orders of magnitude over a conventional fiber probe due to a hybrid effect that excites both propagation modes and surface plasmon waves. In the gap sensing probe, the spacing between the probe and the disk surface functions as an external cavity. The high sensitivity of the output power to the change in the gap width is used as a feedback control signal. We characterize and design the straw-shaped writing probe and the flat gap sensing probe. The dual-probe system is installed on a conventional biaxial actuator to demonstrate the capability of flying over a disk surface with nanometer position precision.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
    [CrossRef]
  2. E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
    [CrossRef] [PubMed]
  3. B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1995).
    [CrossRef]
  4. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 14, 3055-3065 (2004).
    [CrossRef]
  5. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
    [CrossRef]
  6. W.-H. Yeh and M. Mansuripur, "Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens," Appl. Opt. 39, 302-315 (2000).
    [CrossRef]
  7. F. Guo, T. E. Schlesinger, and D. D. Stancil, "Optical field study of near-field optical recording with a solid immersion lens," Appl. Opt. 39, 324-332 (2000).
    [CrossRef]
  8. T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724, (2003).
    [CrossRef]
  9. J. I. Lee, M. A. H. van der Aa, C. A. Verschuren, F. Zijp, and M. B. van der Mark, "Development of an air gap servo system for high data transfer rate near field optical recording," Jpn. J. Appl. Phys. 44, 3423-3426 (2005).
    [CrossRef]
  10. T. Yatsui, M. Kourogi, and M. Ohtsu, "Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure," Appl. Phys. Lett. 73, 2090-2092 (1998).
    [CrossRef]
  11. P. N. Minh, T. Ono, H. Watanabe, S. S. Lee, Y. Haga, and M. Esashi, "Hybrid optical fiber-apertured cantilever near-field probe," Appl. Phys. Lett. 79, 3020-3022 (2001).
    [CrossRef]
  12. G. M. Kim, B. J. Kim, E. S. Ten Have, F. Segerink, N. F. Van Hulst, and J. Brugger, "Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould," J. Microsc. 209, 267-271 (2002).
    [CrossRef]
  13. P. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, "High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy," Appl. Phys. Lett. 86, 0131023 (2005).
    [CrossRef]
  14. C.-H. Tien, Y.-C. Lai, T. D. Milster, and H.-P. D. Shieh, "Design and fabrication of fiberlenses for optical recording applications," Jpn. J. Appl. Phys. 41, 1834-1837 (2002).
    [CrossRef]
  15. C.-H. Tien, H.-L. Chou, Y. Chiu, W. Hsu, T. D. Milster, Y.-C. Lai, and H.-P. D. Shieh, "Fiber-lens-based module for optical recording applications," Jpn. J. Appl. Phys. 42, 4345-4348 (2003).
    [CrossRef]
  16. Y.-J Kim, K. Suzuki, and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
    [CrossRef]
  17. M. Hirata, M. Oumi, K. Nakajima, and T. Ohkubo, "Near-field optical flying head with protruding aperture and its fabrication," Jpn. J. Appl. Phys. 44, 3519-3523 (2005).
    [CrossRef]
  18. A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83, 4474-4476 (2003).
    [CrossRef]
  19. X. Shi, R. L. Thornton, and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
    [CrossRef] [PubMed]
  20. X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
    [CrossRef]
  21. L. Sun and L. Hesselink, "Low-loss subwavelength metal C-aperture waveguide," Opt. Lett. 31, 3606-3608 (2006).
    [CrossRef] [PubMed]
  22. K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
    [CrossRef]
  23. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh," High-transmission hybrid-effect-assisted nanoaperture," Opt. Lett. 31, 655-657 (2006).
    [CrossRef] [PubMed]
  24. Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Double-corrugated c-shaped aperture for near-field recording," Jpn. J. Appl. Phys. 45, 1348-1350 (2006).
    [CrossRef]
  25. Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, "Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host," Opt. Express 14, 10220-10227 (2006).
    [CrossRef] [PubMed]
  26. P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005).
    [CrossRef] [PubMed]
  27. H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988)
  28. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A: Pure Appl. Opt. 4, S283-S294 (2002).
    [CrossRef]
  29. R. O. Miles, A. Dandridge, A. B. Tveten, and T. G. Gialloenzi, "An external cavity diode laser sensor," J. Lightwave Technol. LT-1, 81-93 (1983).
    [CrossRef]
  30. J.-Y. Kim and H. C. Hsieh, "An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head," J. Lightwave Technol. 10, 439-447 (1992).
    [CrossRef]
  31. J.-Y. Kim and H. C. Hsieh, "Asymmetry in the optical output power characteristics of a short-external-cavity laser diode," IEEE Photon. Technol. Lett. 4, 537-539 (1992).
    [CrossRef]

2006

2005

P.-K Wei, Y.-C. Huang, C.-C. Chieng, F.-G. Tseng and W. Fann, "Off-angle illumination induced surface plasmon coupling in subwavelength metallic slits," Opt. Express 13, 10784-10794 (2005).
[CrossRef] [PubMed]

J. I. Lee, M. A. H. van der Aa, C. A. Verschuren, F. Zijp, and M. B. van der Mark, "Development of an air gap servo system for high data transfer rate near field optical recording," Jpn. J. Appl. Phys. 44, 3423-3426 (2005).
[CrossRef]

P. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, "High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy," Appl. Phys. Lett. 86, 0131023 (2005).
[CrossRef]

M. Hirata, M. Oumi, K. Nakajima, and T. Ohkubo, "Near-field optical flying head with protruding aperture and its fabrication," Jpn. J. Appl. Phys. 44, 3519-3523 (2005).
[CrossRef]

2004

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express 14, 3055-3065 (2004).
[CrossRef]

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
[CrossRef]

2003

X. Shi, R. L. Thornton, and L. Hesselink, "Ultrahigh light transmission through a C-shaped nanoaperture," Opt. Lett. 28, 1320-1322 (2003).
[CrossRef] [PubMed]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83, 4474-4476 (2003).
[CrossRef]

C.-H. Tien, H.-L. Chou, Y. Chiu, W. Hsu, T. D. Milster, Y.-C. Lai, and H.-P. D. Shieh, "Fiber-lens-based module for optical recording applications," Jpn. J. Appl. Phys. 42, 4345-4348 (2003).
[CrossRef]

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724, (2003).
[CrossRef]

2002

C.-H. Tien, Y.-C. Lai, T. D. Milster, and H.-P. D. Shieh, "Design and fabrication of fiberlenses for optical recording applications," Jpn. J. Appl. Phys. 41, 1834-1837 (2002).
[CrossRef]

G. M. Kim, B. J. Kim, E. S. Ten Have, F. Segerink, N. F. Van Hulst, and J. Brugger, "Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould," J. Microsc. 209, 267-271 (2002).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A: Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

2001

Y.-J Kim, K. Suzuki, and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
[CrossRef]

P. N. Minh, T. Ono, H. Watanabe, S. S. Lee, Y. Haga, and M. Esashi, "Hybrid optical fiber-apertured cantilever near-field probe," Appl. Phys. Lett. 79, 3020-3022 (2001).
[CrossRef]

2000

1998

T. Yatsui, M. Kourogi, and M. Ohtsu, "Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure," Appl. Phys. Lett. 73, 2090-2092 (1998).
[CrossRef]

1995

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1995).
[CrossRef]

1994

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

1992

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

J.-Y. Kim and H. C. Hsieh, "An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head," J. Lightwave Technol. 10, 439-447 (1992).
[CrossRef]

J.-Y. Kim and H. C. Hsieh, "Asymmetry in the optical output power characteristics of a short-external-cavity laser diode," IEEE Photon. Technol. Lett. 4, 537-539 (1992).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

1983

R. O. Miles, A. Dandridge, A. B. Tveten, and T. G. Gialloenzi, "An external cavity diode laser sensor," J. Lightwave Technol. LT-1, 81-93 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Yatsui, M. Kourogi, and M. Ohtsu, "Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure," Appl. Phys. Lett. 73, 2090-2092 (1998).
[CrossRef]

P. N. Minh, T. Ono, H. Watanabe, S. S. Lee, Y. Haga, and M. Esashi, "Hybrid optical fiber-apertured cantilever near-field probe," Appl. Phys. Lett. 79, 3020-3022 (2001).
[CrossRef]

P. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, "High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy," Appl. Phys. Lett. 86, 0131023 (2005).
[CrossRef]

A. V. Itagi, D. D. Stancil, J. A. Bain, and T. E. Schlesinger, "Ridge waveguide as a near-field optical source," Appl. Phys. Lett. 83, 4474-4476 (2003).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984).
[CrossRef]

B. D. Terris, H. J. Mamin, and D. Rugar, "Near-field optical data storage," Appl. Phys. Lett. 68, 141-143 (1995).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

J.-Y. Kim and H. C. Hsieh, "Asymmetry in the optical output power characteristics of a short-external-cavity laser diode," IEEE Photon. Technol. Lett. 4, 537-539 (1992).
[CrossRef]

J. Appl. Phys.

K. Sendur, W. Challener, and C. Peng, "Ridge waveguide as a near field aperture for high density data storage," J. Appl. Phys. 96, 2743-2752 (2004).
[CrossRef]

J. Lightwave Technol.

R. O. Miles, A. Dandridge, A. B. Tveten, and T. G. Gialloenzi, "An external cavity diode laser sensor," J. Lightwave Technol. LT-1, 81-93 (1983).
[CrossRef]

J.-Y. Kim and H. C. Hsieh, "An open-resonator model for the analysis of a short external-cavity laser diode and its application to the optical disk head," J. Lightwave Technol. 10, 439-447 (1992).
[CrossRef]

J. Microsc.

G. M. Kim, B. J. Kim, E. S. Ten Have, F. Segerink, N. F. Van Hulst, and J. Brugger, "Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould," J. Microsc. 209, 267-271 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A: Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Ishimoto, K. Saito, M. Shinoda, T. Kondo, A. Nakaoki, and M. Yamamoto, "Gap servo system for a biaxial device using an optical gap signal in a near field readout system," Jpn. J. Appl. Phys. 42, 2719-2724, (2003).
[CrossRef]

J. I. Lee, M. A. H. van der Aa, C. A. Verschuren, F. Zijp, and M. B. van der Mark, "Development of an air gap servo system for high data transfer rate near field optical recording," Jpn. J. Appl. Phys. 44, 3423-3426 (2005).
[CrossRef]

C.-H. Tien, Y.-C. Lai, T. D. Milster, and H.-P. D. Shieh, "Design and fabrication of fiberlenses for optical recording applications," Jpn. J. Appl. Phys. 41, 1834-1837 (2002).
[CrossRef]

C.-H. Tien, H.-L. Chou, Y. Chiu, W. Hsu, T. D. Milster, Y.-C. Lai, and H.-P. D. Shieh, "Fiber-lens-based module for optical recording applications," Jpn. J. Appl. Phys. 42, 4345-4348 (2003).
[CrossRef]

Y.-J Kim, K. Suzuki, and K. Goto, "Parallel recording array head of nano-aperture flat-tip probes for high-density near-field optical data storage," Jpn. J. Appl. Phys. 40, 1783-1789 (2001).
[CrossRef]

M. Hirata, M. Oumi, K. Nakajima, and T. Ohkubo, "Near-field optical flying head with protruding aperture and its fabrication," Jpn. J. Appl. Phys. 44, 3519-3523 (2005).
[CrossRef]

Y.-C. Chen, J.-Y. Fang, C.-H. Tien, and H.-P. D. Shieh, "Double-corrugated c-shaped aperture for near-field recording," Jpn. J. Appl. Phys. 45, 1348-1350 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Science

E. Betzig and J. K. Trautman, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992).
[CrossRef] [PubMed]

Other

H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, New York, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Configuration of a dual-probe near-field fiber-based light delivery system

Fig. 2.
Fig. 2.

(a). Schematic illustration of the optical model and (b) the dimensions of the C-aperture

Fig. 3.
Fig. 3.

(a). The power throughput (PT) at a distance of 50 nm from the aperture and reflection coefficient rp as a function of the incident angle and (b) Calculated Ez field profile in XZ plane when the incident angle was 44 degree. The dashed line shows the contour of the metal film and the C-aperture.

Fig. 4.
Fig. 4.

(a). Configuration of an external-cavity laser diode with a length of fiber and (b) an equivalent laser diode

Fig. 5.
Fig. 5.

Comparison of a measured feedback signal and a calculated self-mixing interferometric signal

Fig. 6.
Fig. 6.

Block diagram of the gap control system

Fig. 7.
Fig. 7.

(a). Optical microscopic photo of a 45-degree straw-shaped fiber probe, (b) SEM photo of the C-aperture on the end face of the fiber probe, and (c) near-field intensity distribution measured by NSOM

Fig. 8.
Fig. 8.

Frequency response of the control system

Fig. 9.
Fig. 9.

Experimental result when the axial runout was 5 μm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ sp = 2 π k x
k x = k 0 ( ε m ε d ε m + ε d ) 1 / 2
r e = r D 2 ( 1 R D 2 ) r D 2 n = 1 [ C n 1 ( r D 2 r F 1 e i ϕ F 1 ) n + C n 2 ( r D 2 r F 2 ( 1 R F 1 ) 2 e i ϕ F 2 ) n + C n 3 ( r D 2 r t ( 1 R F 1 ) 2 ( 1 R F 2 ) 2 e i ϕ t ) n ] ,
R i = r i 2 , where i = D 1 , D 2 , F 1 , and F 2 .
ϕ = 4 π d λ .
r e = r D 2 ( 1 R D 2 ) r D 2 n = 1 [ C n 1 ( r D 2 r F 1 e i ϕ F 1 ) n + C n 2 ( r D 2 r F 2 e i ϕ F 2 ) n + C n 3 ( r D 2 r t e i ϕ t ) n ] .
r e = r D 2 ( 1 R D 2 ) C n 1 r D 2 n = 1 ( r D 2 r F 1 e i ϕ F 1 ) n ( 1 R D 2 ) C n 2 r D 2 n = 1 ( r D 2 r F 2 e i ϕ F 2 ) n
( 1 R D 2 ) C n 3 r D 2 n = 1 ( r D 2 r t e i ϕ t ) n
= r D 2 ( 1 R D 2 ) C n 1 r F 1 e i ϕ F 1 1 + r D 2 r F 1 e i ϕ F 1 ( 1 R D 2 ) C n 2 r F 2 e i ϕ F 2 1 + r D 2 r F 2 e i ϕ F 2 ( 1 R D 2 ) C n 3 r t e i ϕ d 1 + r D 2 r t e i ϕ d .
r e = r D 2 ( 1 R D 2 ) C n 3 r t e i ϕ d 1 + r D 2 r t e i ϕ d .
P e ( I I th ) [ P C In ( 1 R D 1 R e ) ] ,

Metrics