Abstract

Quantitative Phase Microscopy (QPM) by interferometric techniques can require a multiwavelength configuration to remove 2p ambiguity and improve accuracy. However, severe chromatic aberration can affect the resulting phase-contrast map. By means of classical interference microscope configuration it is quite unpractical to correct such aberration. We propose and demonstrate that by Digital Holography (DH) in a microscope configuration it is possible to clear out the QPM map from the chromatic aberration in a simpler and more effective way with respect to other approaches. The proposed method takes benefit of the unique feature of DH to record in a plane out-of-focus and subsequently reconstruct numerically at the right focal image plane. In fact, the main effect of the chromatic aberration is to shift differently the correct focal image plane at each wavelength and this can be readily compensated by adjusting the corresponding reconstruction distance for each wavelength. A procedure is described in order to determine easily the relative focal shift among different imaging wavelengths by performing a scanning of the numerical reconstruction along the optical axis, to find out the focus and to remove at the same time the chromatic aberration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C.  Wyant, "Testing aspherics using two-wavelength holography," Appl. Opt. 10, 2113-2118 (1971).
    [CrossRef] [PubMed]
  2. C.  Polhemus, "Two-wavelength interferometry," Appl. Opt.  12, 2071-2074 (1973).
    [CrossRef] [PubMed]
  3. F.  Bien, M.  Camac, H. J.  Caulfield, and S.  Ezekiel, "Absolute distance measurements by variable wavelength interferometry," Appl. Opt.  20, 400-402 (1981).
    [CrossRef] [PubMed]
  4. R.  Onodera and Y.  Ishii, "Two-wavelength interferometry that uses a fourier-transform method," Appl. Opt.  37, 7988-7994 (1998).
    [CrossRef]
  5. P.  de Groot and S.  Kishner, "Synthetic wavelength stabilization for two-color laser-diode interferometry," Appl. Opt.  30, 4026-4033 (1991).
    [CrossRef] [PubMed]
  6. R.  Dändliker, R.  Thalmann, and D.  Prongué, "Two-wavelength laser interferometry using superheterodyne detection," Opt. Lett.  13, 339-341 (1988).
    [CrossRef] [PubMed]
  7. C.  Wagner, W.  Osten, and S.  Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
    [CrossRef]
  8. M. S. Millán, J. Otón, and E. Pérez-Cabré, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 9103-9012 (2006).
    [CrossRef] [PubMed]
  9. A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrel, and G. Baxter, "Determination of bending-induced strain in optical fibers by use of quantitative phase imaging," Opt. Lett. 27, 86 (2002).
    [CrossRef]
  10. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165-1167 (2005).
    [CrossRef] [PubMed]
  11. C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005).
    [CrossRef] [PubMed]
  12. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, "Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy," Opt. Lett. 32, 1572-1574 (2007).
    [CrossRef] [PubMed]
  13. L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holograpy with application to microstructure testing," Appl. Opt. 40, 5046 (2001).
    [CrossRef]
  14. F.  Charrière, A.  Marian, F.  Montfort, J.  Kuehn, T.  Colomb, E.  Cuche, P.  Marquet, and C.  Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett.  31, 178-180 (2006).
    [CrossRef] [PubMed]
  15. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492 (2005).
    [CrossRef] [PubMed]
  16. A. T.  Saucedo, F. M.  Santoyo, M. D. l. Torre-Ibarra, G. Pedrini, and W. Osten, "Endoscopic pulsed digital holography for 3d measurements," Opt. Lett.  14, 1468-1475 (2006).
  17. J. Garcia-Sucerquia, W. Xu, M, H. Jerico, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
    [CrossRef] [PubMed]
  18. P. Picart, J. Leval, F. Piquet, J. P. Boileau, T. Guimezanes, and J. -P. Dalmont, "Tracking high amplitude auto-oscillations with digital Fresnel holograms," Opt. Express 15, 8263-8274 (2007).
    [CrossRef] [PubMed]
  19. G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-7-1699>
    [CrossRef]
  20. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
    [CrossRef] [PubMed]
  21. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express. 14, 5895-5908 (2006).
    [CrossRef] [PubMed]
  22. M. -K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
    [CrossRef] [PubMed]
  23. N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003).
    [CrossRef] [PubMed]
  24. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
    [CrossRef] [PubMed]
  25. B. Javidi, P. Ferraro, S. -H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005).
    [CrossRef] [PubMed]
  26. S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, "Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations," Opt. Lett. 30, 2706-2708 (2005).
    [CrossRef] [PubMed]
  27. D.  Parshall and M.  Kim, "Digital holographic microscopy with dual wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006).
    [CrossRef] [PubMed]
  28. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
    [CrossRef] [PubMed]
  29. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006)
    [CrossRef] [PubMed]
  30. Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]
  31. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, "Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition," Opt. Express. 15, 7231-7242 (2007).
    [CrossRef] [PubMed]
  32. P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, "Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time," Opt. Lett. 28, 1257-1259 (2003).
    [CrossRef] [PubMed]
  33. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005).
    [CrossRef] [PubMed]

2007

2006

F.  Charrière, A.  Marian, F.  Montfort, J.  Kuehn, T.  Colomb, E.  Cuche, P.  Marquet, and C.  Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett.  31, 178-180 (2006).
[CrossRef] [PubMed]

D.  Parshall and M.  Kim, "Digital holographic microscopy with dual wavelength phase unwrapping," Appl. Opt. 45, 451-459 (2006).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, M, H. Jerico, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef] [PubMed]

G. Indebetouw and W. Zhong, "Scanning holographic microscopy of three-dimensional fluorescent specimens," J. Opt. Soc. Am. A 23, 1699-1707 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=josaa-23-7-1699>
[CrossRef]

M. S. Millán, J. Otón, and E. Pérez-Cabré, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 9103-9012 (2006).
[CrossRef] [PubMed]

F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006)
[CrossRef] [PubMed]

A. T.  Saucedo, F. M.  Santoyo, M. D. l. Torre-Ibarra, G. Pedrini, and W. Osten, "Endoscopic pulsed digital holography for 3d measurements," Opt. Lett.  14, 1468-1475 (2006).

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express. 14, 5895-5908 (2006).
[CrossRef] [PubMed]

2005

B. Javidi, P. Ferraro, S. -H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165-1167 (2005).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492 (2005).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005).
[CrossRef] [PubMed]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, "Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations," Opt. Lett. 30, 2706-2708 (2005).
[CrossRef] [PubMed]

2004

2003

2002

2001

2000

M. -K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
[CrossRef] [PubMed]

C.  Wagner, W.  Osten, and S.  Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

1998

1991

1988

1981

1973

1971

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Eng.

C.  Wagner, W.  Osten, and S.  Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000).
[CrossRef]

Opt. Express

M. -K. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000).
[CrossRef] [PubMed]

S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, "Whole optical wavefields reconstruction by digital holography," Opt. Express 9, 294-302 (2001).
[CrossRef] [PubMed]

M. S. Millán, J. Otón, and E. Pérez-Cabré, "Dynamic compensation of chromatic aberration in a programmable diffractive lens," Opt. Express 14, 9103-9012 (2006).
[CrossRef] [PubMed]

N. Demoli, D. Vukicevic, and M. Torzynski, "Dynamic digital holographic interferometry with three wavelengths," Opt. Express 11, 767-774 (2003).
[CrossRef] [PubMed]

P. Picart, J. Leval, F. Piquet, J. P. Boileau, T. Guimezanes, and J. -P. Dalmont, "Tracking high amplitude auto-oscillations with digital Fresnel holograms," Opt. Express 15, 8263-8274 (2007).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, "Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography," Opt. Express 13, 4492 (2005).
[CrossRef] [PubMed]

Opt. Express.

F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, "Focus plane detection criteria in digital holography microscopy by amplitude analysis," Opt. Express. 14, 5895-5908 (2006).
[CrossRef] [PubMed]

J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, "Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition," Opt. Express. 15, 7231-7242 (2007).
[CrossRef] [PubMed]

Opt. Lett.

A. T.  Saucedo, F. M.  Santoyo, M. D. l. Torre-Ibarra, G. Pedrini, and W. Osten, "Endoscopic pulsed digital holography for 3d measurements," Opt. Lett.  14, 1468-1475 (2006).

R.  Dändliker, R.  Thalmann, and D.  Prongué, "Two-wavelength laser interferometry using superheterodyne detection," Opt. Lett.  13, 339-341 (1988).
[CrossRef] [PubMed]

A. Roberts, K. Thorn, M. L. Michna, N. Dragomir, P. Farrel, and G. Baxter, "Determination of bending-induced strain in optical fibers by use of quantitative phase imaging," Opt. Lett. 27, 86 (2002).
[CrossRef]

Yamaguchi, T. Matsumura, and J. Kato, "Phase-shifting color digital holography," Opt. Lett. 27, 1108-1110 (2002).
[CrossRef]

P. Ferraro, G. Coppola, S. De Nicola, A. Finizio, and G. Pierattini, "Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time," Opt. Lett. 28, 1257-1259 (2003).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
[CrossRef] [PubMed]

B. Javidi, P. Ferraro, S. -H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005)
[CrossRef] [PubMed]

C. Joo, T. Akkin, B. Cense, B. H. Park, and J. F. de Boer, "Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging," Opt. Lett. 30, 2131 (2005).
[CrossRef] [PubMed]

S. De Nicola, A. Finizio, G. Pierattini, D. Alfieri, S. Grilli, L. Sansone, and P. Ferraro, "Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations," Opt. Lett. 30, 2706-2708 (2005).
[CrossRef] [PubMed]

F.  Charrière, A.  Marian, F.  Montfort, J.  Kuehn, T.  Colomb, E.  Cuche, P.  Marquet, and C.  Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett.  31, 178-180 (2006).
[CrossRef] [PubMed]

T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165-1167 (2005).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, M, H. Jerico, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006).
[CrossRef] [PubMed]

C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld, "Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy," Opt. Lett. 32, 1572-1574 (2007).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (320 KB)     
» Media 2: MOV (2457 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

DH off-axis set-up with two wavelengths. M=mirror; BS= beam splitter; S= sample

Fig. 2.
Fig. 2.

Image plane shift due to chromatic aberration.

Fig. 3.
Fig. 3.

Difference phase map of the test object: the reconstruction distance for green wavelength is d=105mm, while for red wavelength is (a) d=105mmí; (b) d=114mm; (c) d=120mm. (d) The residual phase corresponding to (c) is reported as Δ φr /2π

Fig. 4.
Fig. 4.

Difference phase map for the in-vitro mouse cell. The reconstruction distance for blue wavelength is fixed at d=110mm while the reconstruction distance for red wavelength is (a) d=110mm and (b) d=114mm; (c) (2,39 MB) Movie of the difference phase map for the in vitro mouse cell while the reconstruction distance of red wavelength is varied from 90mm to 120mm [Media 1]

Fig. 5.
Fig. 5.

Difference between two phase maps evaluated in slightly distant planes for the same wavelength.

Fig. 6.
Fig. 6.

Difference phase map between red and green wavelength; the reconstruction distance for green wavelength is d = 85mm, reconstruction distance for red wavelength is d = 85 mm (a) and d = 110mm (b); (c) (319 KB) Movie of the difference phase map for the optical waveguide [Media 2]

Fig. 7.
Fig. 7.

Refractive index change calculated using an equivalent wavelength: (a) 2D and (b) 3D representation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ G ( x , y ) = φ 0 ( x M G , y M G ) + π λ G ( 1 + 1 M G ) x 2 + y 2 D d G
φ G ( n , m ) = φ 0 ( n Δ x G M G , m Δ x G M G ) + π λ G ( 1 + 1 M G ) n 2 + m 2 D d G Δ x G 2
Δ x G = Δ y G = λ G ( D d G ) N G Δ ξ
φ R ( n , m ) = φ 0 ( n Δ x R M R , m Δ x R M R ) + π λ R ( 1 + 1 M R ) n 2 + m 2 D d R Δ x R 2
Δ x R = Δ y R = λ R ( D d R ) N R Δ ξ
Δ φ = φ R φ G = ( φ 0 , R φ 0 , G ) + Δ φ r
Δ x G M G = Δ x G M R .

Metrics