Abstract

Single crystals of Yb:RbTiOPO4 codoped with Nb5+ or Ta5+ were grown by the top seeded solution growth slow-cooling technique. The ytterbium concentration in the crystals varies as a function of the molar ratio of the precursor oxides and of the codopant, reaching a maximum value of 1.9×1020 Yb3+ ions/cm3. The broad band near 1 μm in absorption and emission spectra at room temperature is due to the large splitting of the Yb3+ ground state. The ytterbium 2F5/2 level radiative lifetime in Nb:RbTiOPO4(τrad = 2.7 ms), was calculated and then compared to the measured fluorescence decay time (τem = 2.2 ms), giving an intrinsic quantum efficiency of 81%. To evaluate the potentiality of these crystals for self-frequency doubling, preliminary results of Yb3+ laser operation and fundamental wavelength measurements for type-II non-critical second harmonic generation (λNCPM) are also reported.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Brenier, D. Jaque, and A. Majchrowski, "Bi-functional laser and non-linear optical crystals," Opt. Mater. 28, 310-323 (2006).
    [CrossRef]
  2. D. A. Hammons, J. M. Eichenholz, Q. Ye, B. H. T. Chai, L. Shah, R. E. Peale, M. Richardson, and H. Qiu, "Laser action in Yb:YCOB (Yb:YCa4O(BO3)3)," Opt. Commun. 156, 327-330 (1998).
    [CrossRef]
  3. H. Zhang, X. Meng, P. Wang, L. Zhu, X. Liu, X. Liu, Y. Yang, R. Wang, J. Dawes, J. Piper, S. Zhang, and L. Sun, "Growth of Yb-doped Ca4GdO(BO3)3 crystals and their spectra and laser properties," J. Cryst. Growth 222, 209-214 (2001).
    [CrossRef]
  4. L. E. Bausá, M. O. Ramírez, and E. Montoya, "Optical performance of Yb3+ in LiNbO3 laser crystal," Phys. Stat. Sol. A 201, 289-297 (2004).
    [CrossRef]
  5. P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, "1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser," Opt. Commun. 195, 431-436 (2001).
    [CrossRef]
  6. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "KxRb1-xTiOPO4: A new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976).
    [CrossRef]
  7. J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Rico, C. Zaldo, M. Aguiló, and F. Díaz, "Enhancement of the erbium concentration in RbTiOPO4 by codoping with niobium," Chem. Mater. 12, 3171-3180 (2000).
    [CrossRef]
  8. J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Aguiló, and F. Díaz, "Crystallization region, crystal growth, and characterization of rubidium titanyl phosphate codoped with niobium and lanthanide ions," Chem. Mater. 14, 3136-3142 (2002).
    [CrossRef]
  9. A. Peña, J. J. Carvajal, J. Massons, J. Gavaldà, F. Díaz, and M. Aguiló, "Yb:Ta:RbTiOPO4, a new strategy for further increase the lanthanide concentration in crystals of the KTiOPO4 family," Chem. Mater. (in press).
  10. J. J. Carvajal, C. F. Woensdregt, R. Solé, F. Díaz, and M. Aguiló, "Change in the morphology of RbTiOPO4 introduced by the presence of Nb," Cryst. Growth & Des. 6, 2667-2673 (2006).
    [CrossRef]
  11. J. J. Carvajal, J. L. García-Muñoz, R. Solé, Jna. Gavaldà, J. Massons, X. Solans, F. Díaz, and M. Aguiló, "Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4,"Chem. Mater. 15, 2338-2345 (2003).
    [CrossRef]
  12. R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Cryst. A 32, 751-767 (1976).
    [CrossRef]
  13. D. Bravo, A. Martín, J. J. Carvajal, M. Aguiló, F. Díaz, and F. J. López, "Er3+ impurities in KTiOPO4 studied by electron paramagnetic resonance," J. Phys.- Condens. Matter 18, 6655-6663 (2006).
    [CrossRef]
  14. D. Bravo, A. Martín, J. J. Carvajal, M. Aguiló, F. Díaz, and F. J. López, "An EPR study of Er3+ impurities in RbTiOPO4 single crystals," Eur. J. Phys. (Submitted)
  15. J. J. Carvajal, R. Solé, Jna. Gavaldà, J. Massons, P. Segonds, B. Boulanger, A. Brenier, G. Boulon, J. Zaccaro, M. Aguiló, and F. Díaz, "Spectroscopic and second harmonic generation properties of a new crystal: Yb-doped RbTiOPO4," Opt. Mater. 26, 313-317 (2004).
    [CrossRef]
  16. M. Weber, "Optical Properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153 -3159 (1971).
    [CrossRef]
  17. F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, "Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal," J. Opt. Soc. Am. B 16, 164-172 (1999).
    [CrossRef]
  18. A. Aron, G. Aka, B. Viana, A. Kahn-Harari, D. Vivien, F. Druon, F. Balembois, P. Georges, A. Brun, N. Lenain, and M. Jacquet, "Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material," Opt. Mater. 16, 181-188 (2001).
    [CrossRef]
  19. P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. Lu, "Growth and evaluation of ytterbium-doped yttrium aluminum borate as a potential self-doubling laser crystal," J. Opt. Soc. Am. B 16, 63-69 (1999).
    [CrossRef]
  20. Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, "Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal," Appl. Phys. B 86, 71-75 (2007).
    [CrossRef]
  21. E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausà, A. Diening, T. Kellner, and G. Huber, "Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3," J. Appl. Phys. 87, 4056-4062 (2000).
    [CrossRef]
  22. I. Parreu, M. C. Pujol, M. Aguiló, F. Díaz, X. Mateos, and V. Petrov, "Growth, spectroscopy and laser operation of Yb:KGd(PO3)4 single crystals," Opt. Express 15, 2360-2368 (2007).
    [CrossRef] [PubMed]
  23. P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, "Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser," Opt. Commun. 174, 467-470 (2000).
    [CrossRef]
  24. X. Mateos, V. Petrov, A. Peña, J. J. Carvajal, M. Aguiló, F. Díaz, P. Segonds, and B. Boulanger, "Laser operation of Yb3+ in the acentric RbTiOPO4 codoped with Nb5+," Opt. Lett. 32, 1929-1931 (2007).
    [CrossRef] [PubMed]

2007

2006

D. Bravo, A. Martín, J. J. Carvajal, M. Aguiló, F. Díaz, and F. J. López, "Er3+ impurities in KTiOPO4 studied by electron paramagnetic resonance," J. Phys.- Condens. Matter 18, 6655-6663 (2006).
[CrossRef]

A. Brenier, D. Jaque, and A. Majchrowski, "Bi-functional laser and non-linear optical crystals," Opt. Mater. 28, 310-323 (2006).
[CrossRef]

J. J. Carvajal, C. F. Woensdregt, R. Solé, F. Díaz, and M. Aguiló, "Change in the morphology of RbTiOPO4 introduced by the presence of Nb," Cryst. Growth & Des. 6, 2667-2673 (2006).
[CrossRef]

2004

L. E. Bausá, M. O. Ramírez, and E. Montoya, "Optical performance of Yb3+ in LiNbO3 laser crystal," Phys. Stat. Sol. A 201, 289-297 (2004).
[CrossRef]

J. J. Carvajal, R. Solé, Jna. Gavaldà, J. Massons, P. Segonds, B. Boulanger, A. Brenier, G. Boulon, J. Zaccaro, M. Aguiló, and F. Díaz, "Spectroscopic and second harmonic generation properties of a new crystal: Yb-doped RbTiOPO4," Opt. Mater. 26, 313-317 (2004).
[CrossRef]

2003

J. J. Carvajal, J. L. García-Muñoz, R. Solé, Jna. Gavaldà, J. Massons, X. Solans, F. Díaz, and M. Aguiló, "Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4,"Chem. Mater. 15, 2338-2345 (2003).
[CrossRef]

2002

J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Aguiló, and F. Díaz, "Crystallization region, crystal growth, and characterization of rubidium titanyl phosphate codoped with niobium and lanthanide ions," Chem. Mater. 14, 3136-3142 (2002).
[CrossRef]

2001

A. Aron, G. Aka, B. Viana, A. Kahn-Harari, D. Vivien, F. Druon, F. Balembois, P. Georges, A. Brun, N. Lenain, and M. Jacquet, "Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material," Opt. Mater. 16, 181-188 (2001).
[CrossRef]

H. Zhang, X. Meng, P. Wang, L. Zhu, X. Liu, X. Liu, Y. Yang, R. Wang, J. Dawes, J. Piper, S. Zhang, and L. Sun, "Growth of Yb-doped Ca4GdO(BO3)3 crystals and their spectra and laser properties," J. Cryst. Growth 222, 209-214 (2001).
[CrossRef]

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, "1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser," Opt. Commun. 195, 431-436 (2001).
[CrossRef]

2000

J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Rico, C. Zaldo, M. Aguiló, and F. Díaz, "Enhancement of the erbium concentration in RbTiOPO4 by codoping with niobium," Chem. Mater. 12, 3171-3180 (2000).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausà, A. Diening, T. Kellner, and G. Huber, "Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3," J. Appl. Phys. 87, 4056-4062 (2000).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, "Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

1999

1998

D. A. Hammons, J. M. Eichenholz, Q. Ye, B. H. T. Chai, L. Shah, R. E. Peale, M. Richardson, and H. Qiu, "Laser action in Yb:YCOB (Yb:YCa4O(BO3)3)," Opt. Commun. 156, 327-330 (1998).
[CrossRef]

1976

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "KxRb1-xTiOPO4: A new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976).
[CrossRef]

R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Cryst. A 32, 751-767 (1976).
[CrossRef]

1971

M. Weber, "Optical Properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153 -3159 (1971).
[CrossRef]

Acta Cryst. A

R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Cryst. A 32, 751-767 (1976).
[CrossRef]

Appl. Phys. B

Z. Zhu, J. Li, A. Brenier, G. Jia, Z. You, X. Lu, B. Wu, and C. Tu, "Growth, spectroscopic and laser properties of Yb3+-doped GdAl3(BO3)4 crystal: a candidate for infrared laser crystal," Appl. Phys. B 86, 71-75 (2007).
[CrossRef]

Chem. Mater.

J. J. Carvajal, J. L. García-Muñoz, R. Solé, Jna. Gavaldà, J. Massons, X. Solans, F. Díaz, and M. Aguiló, "Charge self-compensation in the nonlinear optical crystals Rb0.855Ti0.955Nb0.045OPO4 and RbTi0.927Nb0.056Er0.017OPO4,"Chem. Mater. 15, 2338-2345 (2003).
[CrossRef]

J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Rico, C. Zaldo, M. Aguiló, and F. Díaz, "Enhancement of the erbium concentration in RbTiOPO4 by codoping with niobium," Chem. Mater. 12, 3171-3180 (2000).
[CrossRef]

J. J. Carvajal, V. Nikolov, R. Solé, Jna. Gavaldà, J. Massons, M. Aguiló, and F. Díaz, "Crystallization region, crystal growth, and characterization of rubidium titanyl phosphate codoped with niobium and lanthanide ions," Chem. Mater. 14, 3136-3142 (2002).
[CrossRef]

A. Peña, J. J. Carvajal, J. Massons, J. Gavaldà, F. Díaz, and M. Aguiló, "Yb:Ta:RbTiOPO4, a new strategy for further increase the lanthanide concentration in crystals of the KTiOPO4 family," Chem. Mater. (in press).

Cryst. Growth & Des.

J. J. Carvajal, C. F. Woensdregt, R. Solé, F. Díaz, and M. Aguiló, "Change in the morphology of RbTiOPO4 introduced by the presence of Nb," Cryst. Growth & Des. 6, 2667-2673 (2006).
[CrossRef]

Eur. J. Phys.

D. Bravo, A. Martín, J. J. Carvajal, M. Aguiló, F. Díaz, and F. J. López, "An EPR study of Er3+ impurities in RbTiOPO4 single crystals," Eur. J. Phys. (Submitted)

J. Appl. Phys.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "KxRb1-xTiOPO4: A new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976).
[CrossRef]

E. Montoya, J. A. Sanz-García, J. Capmany, L. E. Bausà, A. Diening, T. Kellner, and G. Huber, "Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3," J. Appl. Phys. 87, 4056-4062 (2000).
[CrossRef]

J. Cryst. Growth

H. Zhang, X. Meng, P. Wang, L. Zhu, X. Liu, X. Liu, Y. Yang, R. Wang, J. Dawes, J. Piper, S. Zhang, and L. Sun, "Growth of Yb-doped Ca4GdO(BO3)3 crystals and their spectra and laser properties," J. Cryst. Growth 222, 209-214 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.- Condens. Matter

D. Bravo, A. Martín, J. J. Carvajal, M. Aguiló, F. Díaz, and F. J. López, "Er3+ impurities in KTiOPO4 studied by electron paramagnetic resonance," J. Phys.- Condens. Matter 18, 6655-6663 (2006).
[CrossRef]

Opt. Commun.

P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, "1.1 W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser," Opt. Commun. 195, 431-436 (2001).
[CrossRef]

D. A. Hammons, J. M. Eichenholz, Q. Ye, B. H. T. Chai, L. Shah, R. E. Peale, M. Richardson, and H. Qiu, "Laser action in Yb:YCOB (Yb:YCa4O(BO3)3)," Opt. Commun. 156, 327-330 (1998).
[CrossRef]

P. Wang, J. M. Dawes, P. Dekker, and J. A. Piper, "Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser," Opt. Commun. 174, 467-470 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

A. Brenier, D. Jaque, and A. Majchrowski, "Bi-functional laser and non-linear optical crystals," Opt. Mater. 28, 310-323 (2006).
[CrossRef]

A. Aron, G. Aka, B. Viana, A. Kahn-Harari, D. Vivien, F. Druon, F. Balembois, P. Georges, A. Brun, N. Lenain, and M. Jacquet, "Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material," Opt. Mater. 16, 181-188 (2001).
[CrossRef]

J. J. Carvajal, R. Solé, Jna. Gavaldà, J. Massons, P. Segonds, B. Boulanger, A. Brenier, G. Boulon, J. Zaccaro, M. Aguiló, and F. Díaz, "Spectroscopic and second harmonic generation properties of a new crystal: Yb-doped RbTiOPO4," Opt. Mater. 26, 313-317 (2004).
[CrossRef]

Phys. Rev. B

M. Weber, "Optical Properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3," Phys. Rev. B 4, 3153 -3159 (1971).
[CrossRef]

Phys. Stat. Sol. A

L. E. Bausá, M. O. Ramírez, and E. Montoya, "Optical performance of Yb3+ in LiNbO3 laser crystal," Phys. Stat. Sol. A 201, 289-297 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Yb:Nb:RTP and Yb:Ta:RTP measured absorption cross-sections at room temperature.

Fig. 2.
Fig. 2.

Temperature evolution of the absorption cross sections of Yb:Nb:RTP (a) and Yb:Ta:RTP (b) for E//c.

Fig. 3.
Fig. 3.

Room and low temperature emission of Yb:Nb:RTP (a) and Yb:Ta:RTP (b). Inset: schematic diagrams of the Yb3+ Stark sublevels with absorption and emission transitions.

Fig. 4.
Fig. 4.

Laser set-up consisting of two folding mirrors (M1 and M2) with radius of curvature equal to -10 cm, a rear plane reflector (M3), and a plane output coupler (M4) with transmission Toc = 1 or 3%.%. L is a focusing lens.

Fig. 5.
Fig. 5.

Gain cross sections, σg =β σem -(1 - β)σabs , of Yb:Nb:RTP for the three polarizations where β denotes the inversion rate.

Fig. 6.
Fig. 6.

Tunable operation of the Yb:Nb:RTP laser for E//b.

Tables (3)

Tables Icon

Table 1. Data associated with ytterbium-doped Nb:RTP and Ta:RTP single crystals grown by the TSSG-SC method. A: Growth experiment, B: Solution % molar composition Yb2O3:(Nb2O5 or Ta2O5 ):TiO2:Rb2O:P2O5:WO3, C: Distribution coefficient of ytterbium in RTP, D: Crystal stoichiometry, E: Saturation temperature, K, F: Solution weight, g, G: Axial gradient, K/mm, H: Seed width in a direction, mm, I: Cooling program: (cooling range, K)/(cooling ramp, K/h), J: Crystal dimensions (a × b × c), mm3, K: Crystal weight, g.

Tables Icon

Table 2. Spectroscopic and laser parameters of Yb3+ doped non-centrosymmetric laser crystals.

Tables Icon

Table 3. Relevant laser parameters: threshold (absorbed power Pth ), slope efficiency (η) and oscillation wavelength (λL ), of Yb:Nb:RTP in dependence on the polarization and the output coupler used.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 τ rad = A if = ( g f g i ) 8 π n 2 N λ 2 α ( v ) dv
β min = σ abs ( λ ext ) σ abs ( λ ext ) + σ em ( λ ext )
I sat = hc λ pump σ abs ( λ pump ) τ em
I min = β min I sat

Metrics