Abstract

We demonstrate fast counting and multiphoton detection abilities of a Silicon Photo Multiplier (SiPM). In fast counting mode we are able to detect two consecutive photons separated by only 2.3 ns corresponding to 430 MHz. The counting efficiency for small optical intensities at λ = 532 nm was found to be around 16% with a dark count rate of 52 kHz at T = -5° C. Using the SiPM in multiphoton detection mode, we find a good signal discrimination for different numbers of simultaneously detected photons.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, F. Zappa, "Avalanche photodiodes and quenching circuits for singlephoton detection," Appl. Opt. 35, 1956-1976 (1996).
    [CrossRef] [PubMed]
  2. S. Takeuchi, J. Kim, Y. Yamamoto, H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
    [CrossRef]
  3. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
    [CrossRef]
  4. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
    [CrossRef]
  5. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single photon detectors," Nature Photonics 1, 343 (2007) (revised version).
    [CrossRef]
  6. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13, 3015-3020 (2005).
    [CrossRef] [PubMed]
  7. R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam, G. S. Buller, "Low timing jitter detector for gigahertz quantum key distribution," Electron. Lett. 43, 180-182 (2007).
    [CrossRef]
  8. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14, 9522-9530 (2006).
    [CrossRef] [PubMed]
  9. A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, "Optical Quantum Random Number Generator," quant-ph/9907006 (1999).
  10. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger "A Fast and Compact Quantum Random Number Generator," quant-ph/9912118v1.
  11. E. Diamanti, C. Langrock, M.M. Fejer, Y. Yamamoto, "1.5 μm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide," Opt. Lett. 31, 727-729 (2006).
    [CrossRef] [PubMed]
  12. M. Legre, R. T. Thew, H. Zbinden, N. Gisin, "High resolution optical time domain reflectometer based on 1.55m up-conversion photon-counting module," Opt. Express 15, 8237-8242 (2007).
    [CrossRef] [PubMed]
  13. C. Straubmeier, G. Kanbach, and F. Schrey, "OPTIMA : A Photon Counting High-Speed Photometer," Exp. Astr. 11, 157-170 (2001).
    [CrossRef]
  14. G. Naletto,C. Barbieri, T. Occhipinti, F. Tamburini, D. Dravins, "Very fast photon counting photometers for astronomical applications: from QuantEYE to AquEYE," Proceedings SPIE Europe, Prague 07, 6583A-10 (2007).
  15. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
    [CrossRef]
  16. A. Rochas, P. A. Besse, R. S. Popovic, "Actively Recharged Single Photon Counting Avalanche CMOS Photodiode with less than 9ns Dead Time," Proc. 16th Eurosensors Conference, Prague, Czech Republic, 482-483, 15-18 Sept. 2002.
  17. A. Giudice, M. Ghioni, R. Biasi, S. Cova, P. Maccagnani, A. Gulinatti, "High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules," J. Mod. Opt. 54 (2-3), 225-237 (2007).
    [CrossRef]
  18. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Reduced Deadtime and Higher Rate Photon- Counting Detection using a Multiplexed Detector Array," J. Mod. Opt. 54, 337-352 (2007).
    [CrossRef]
  19. Buzhan et al., Nucl. Instrum. Methods 504, 48-52 (2003).
    [CrossRef]
  20. V. Golovin, V. Saveliev, "Novel type of avalanche photodetector with Geiger mode operation," Nucl. Instrum. Methods Phys. Res. A 518, 560-564 (2004).
    [CrossRef]
  21. A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, M. Teshima, "A test of silicon photomultipliers as readout for PET," Nucl. Instrum. Methods 545, 705-715 (2005).
    [CrossRef]
  22. E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, R. Rocca, "Silicon photomultipliers and their bio-medical applications," et al., Nucl. Instrum. Methods 571, 130-133 (2007).
    [CrossRef]

2007 (7)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single photon detectors," Nature Photonics 1, 343 (2007) (revised version).
[CrossRef]

R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam, G. S. Buller, "Low timing jitter detector for gigahertz quantum key distribution," Electron. Lett. 43, 180-182 (2007).
[CrossRef]

G. Naletto,C. Barbieri, T. Occhipinti, F. Tamburini, D. Dravins, "Very fast photon counting photometers for astronomical applications: from QuantEYE to AquEYE," Proceedings SPIE Europe, Prague 07, 6583A-10 (2007).

A. Giudice, M. Ghioni, R. Biasi, S. Cova, P. Maccagnani, A. Gulinatti, "High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules," J. Mod. Opt. 54 (2-3), 225-237 (2007).
[CrossRef]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Reduced Deadtime and Higher Rate Photon- Counting Detection using a Multiplexed Detector Array," J. Mod. Opt. 54, 337-352 (2007).
[CrossRef]

E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, R. Rocca, "Silicon photomultipliers and their bio-medical applications," et al., Nucl. Instrum. Methods 571, 130-133 (2007).
[CrossRef]

M. Legre, R. T. Thew, H. Zbinden, N. Gisin, "High resolution optical time domain reflectometer based on 1.55m up-conversion photon-counting module," Opt. Express 15, 8237-8242 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, M. Teshima, "A test of silicon photomultipliers as readout for PET," Nucl. Instrum. Methods 545, 705-715 (2005).
[CrossRef]

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13, 3015-3020 (2005).
[CrossRef] [PubMed]

2004 (2)

V. Golovin, V. Saveliev, "Novel type of avalanche photodetector with Geiger mode operation," Nucl. Instrum. Methods Phys. Res. A 518, 560-564 (2004).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

2003 (1)

Buzhan et al., Nucl. Instrum. Methods 504, 48-52 (2003).
[CrossRef]

2001 (2)

C. Straubmeier, G. Kanbach, and F. Schrey, "OPTIMA : A Photon Counting High-Speed Photometer," Exp. Astr. 11, 157-170 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

1999 (1)

S. Takeuchi, J. Kim, Y. Yamamoto, H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

1996 (1)

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Takeuchi, J. Kim, Y. Yamamoto, H. Hogue, "Development of a high-quantum-efficiency single-photon counting system," Appl. Phys. Lett. 74, 1063-1065 (1999).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Electr. Lett. (1)

R. J. Collins, R. H. Hadfield, V. Fernandez, S. W. Nam, G. S. Buller, "Low timing jitter detector for gigahertz quantum key distribution," Electron. Lett. 43, 180-182 (2007).
[CrossRef]

Exp.Astr. (1)

C. Straubmeier, G. Kanbach, and F. Schrey, "OPTIMA : A Photon Counting High-Speed Photometer," Exp. Astr. 11, 157-170 (2001).
[CrossRef]

J. Mod. Opt. (2)

A. Giudice, M. Ghioni, R. Biasi, S. Cova, P. Maccagnani, A. Gulinatti, "High-rate photon counting and picosecond timing with silicon-SPAD based compact detector modules," J. Mod. Opt. 54 (2-3), 225-237 (2007).
[CrossRef]

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Reduced Deadtime and Higher Rate Photon- Counting Detection using a Multiplexed Detector Array," J. Mod. Opt. 54, 337-352 (2007).
[CrossRef]

Nature Photonics (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, "Quantum key distribution over 40 dB channel loss using superconducting single photon detectors," Nature Photonics 1, 343 (2007) (revised version).
[CrossRef]

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006).
[CrossRef]

Nucl. Instrum. Methods (3)

Buzhan et al., Nucl. Instrum. Methods 504, 48-52 (2003).
[CrossRef]

A. N. Otte, J. Barral, B. Dolgoshein, J. Hose, S. Klemin, E. Lorenz, R. Mirzoyan, E. Popova, M. Teshima, "A test of silicon photomultipliers as readout for PET," Nucl. Instrum. Methods 545, 705-715 (2005).
[CrossRef]

E. Grigoriev, A. Akindinov, M. Breitenmoser, S. Buono, E. Charbon, C. Niclass, I. Desforges, R. Rocca, "Silicon photomultipliers and their bio-medical applications," et al., Nucl. Instrum. Methods 571, 130-133 (2007).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

V. Golovin, V. Saveliev, "Novel type of avalanche photodetector with Geiger mode operation," Nucl. Instrum. Methods Phys. Res. A 518, 560-564 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proceedings SPIE Europe, Prague (1)

G. Naletto,C. Barbieri, T. Occhipinti, F. Tamburini, D. Dravins, "Very fast photon counting photometers for astronomical applications: from QuantEYE to AquEYE," Proceedings SPIE Europe, Prague 07, 6583A-10 (2007).

Other (3)

A. Rochas, P. A. Besse, R. S. Popovic, "Actively Recharged Single Photon Counting Avalanche CMOS Photodiode with less than 9ns Dead Time," Proc. 16th Eurosensors Conference, Prague, Czech Republic, 482-483, 15-18 Sept. 2002.

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, H. Zbinden, "Optical Quantum Random Number Generator," quant-ph/9907006 (1999).

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger "A Fast and Compact Quantum Random Number Generator," quant-ph/9912118v1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Left : Schematic of SiPM. Single APDs are connected in parallel, thus simultaneous detections of single APDs get superposed to form an output signal proportional to the number of simultaneous detections. Right : Photograph of SiPM. 132 pixel (APDs) with a total surface area of 780 μm x 780 μm. A single pixel measures 57.5 μm x 57.5 μm.

Fig. 2.
Fig. 2.

Left : Distribution of output signal heights of SiPM when illuminated with weak coherent optical pulses with a fixed average number of photons per pulse. The first peak corresponds to no detection, the second peak to one detection, the third to two simultaneous detections and so on. Right : Probability of obtaining a certain number of simultaneous detections for three different mean numbers of incident photons/pulse (hollow points). Values a 0 represent the mean number of these data distributions. Dashed curves are Poisson distributions having the same mean number as the data distributions. Solid curves are obtained with Eq.(2) accounting for cross-talk effects.

Fig. 3.
Fig. 3.

Left : SiPM output signal in multiphoton counting configuration. Right : Improved output signal behind high pass amplifier, suited for fast photon counting.

Fig. 4.
Fig. 4.

Setup for fast counting. The SiPM is housed in a sealed box. The beam at the output of the fiber gets adapted to the size of the SiPM by a lense. The output signal is amplified and analysed with an oscilloscope.

Fig. 5.
Fig. 5.

Left : Detection efficiency for different values of bias voltage at T = -5° C, when sending weak coherent pulses (λ = 532 nm) of 0.09 photons per pulse at a rate of 430 MHz. Right : Evolution of noise rate for different temperatures with Vbias = 32 V.

Fig. 6.
Fig. 6.

Comparison of the detection rates ofa state of the art Si-APD and our SiPM when illuminated withincreasing opticalpulse repetition rates. Whle the Si-APD cannot follow the optical pulse rate abo ve 17 MHz, the SiPM (Vbias = 31 V) reproduces the correct rate up to 40 MHz with an accuracy of about 2%.

Fig. 7.
Fig. 7.

Left : Response signal of the SiPM as seen on the oscilloscope. Power per optical pulse is chosen sufficiently large to ensure one detection per pulse. Adjacent detection signals are separated sufficiently to be registered correctly. Right : Three detections recorded when the number of incident photons was about 0.01 photons/pulse. The first two detections due to two successive single photons are separated by 2.3 ns.

Fig 8.
Fig 8.

Detection rate of the SiPM when illuminated by a gradually attenuated mode locked laser withpulse repetition rate of 430 MHz The data is compared to two theoretical curves The dashed curve assumes a constant efficiency of η = 16%, fitting data only for very low count rates (compare with Fig. 5). The solid curve assumes an exponentially decreasing efficiency.

Fig. 9.
Fig. 9.

SiPM response to a CW source at λ = 633 nm. We find a linear behavior up to detection rates of 50 MHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p ( n ) = p th ( n ) + p ( n 1 ) p ct ( n 1 ) p ( n ) p ct n , n > 0
p ( 0 ) = p th ( 0 )
p ( n ) = p th ( n ) + ( n 1 ) p ( n 1 ) p ct 1 + np ct , n > 0
P det ( μ ) = k 1 p ( k , μ ) ( 1 ( 1 η ) k ) = 1 p ( 0 , μ η ) = 1 e μ η
p ( k , μ ) : = e μ μ k k ! ( Poissonian distribution ) ( 1 ( 1 η ) k ) : weight due to binomial statistics μ : average number of photons per pulse η : efficiency of det ector
η = 1 μ In ( 1 f det f rep )
η ( μ ) : = p 1 e p 2 μ + p 3

Metrics