Abstract

Self-organized microgratings were induced in the bulk SrTiO3 crystal by readily scanning the laser focus in the direction perpendicular to the laser propagation axis. The groove orientations of those gratings could be controlled by changing the irradiation pulse number per unit scanning length, which could be implemented either through adjusting the scanning velocity at a fixed pulse repetition rate or through varying the pulse repetition rate at a fixed scanning velocity. This high-speed method for fabrication of microgratings will have many potential applications in the integration of micro-optical elements. The possible formation mechanism of the self-organized microgratings is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, "Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanate ions," Quantum Elect. 31, 689-696 (2001).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  3. H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001).
    [CrossRef]
  4. J. Qiu, C. Zhu, T. Nakaya, J. Si, F. Ogura, K. Kojima, and K. Hirao, "Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser," Appl. Phys. Lett. 79, 3567-3569 (2001).
    [CrossRef]
  5. B. Tan, Narayanswamy, R. Sivakumar and K. Venkatakrishnan, "Direct grating writing using femtosecond laser interference fringes formed at the focal point," J. Opt. A 7, 169-174 (2005).
    [CrossRef]
  6. Q. Z. Zhao, J. R. Qiu, X. W. Jiang, C. J. Zhao, and C. S. Zhu, "Fabrication of internal diffraction gratings in calcium fluoride crystals by a focused femtosecond laser," Opt. Express 12, 742-746 (2004).
    [CrossRef] [PubMed]
  7. C. W. Smelser, D. Grobnic, and S. J. Mihailov, "Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask," Opt. Lett. 29, 1730-1732 (2004).
    [CrossRef] [PubMed]
  8. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  9. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiation by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
    [CrossRef] [PubMed]
  10. W. J. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek and A. Y. Arai, "Self-assembled periodic subwavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
    [CrossRef] [PubMed]
  11. C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, P. B. Corkum, and R. S. Taylor, "Femtosecond laser writing of porous capillaries inside fused silica glass," Opt. Lett. 32, 1459-1461 (2007).
    [CrossRef] [PubMed]
  12. J. Song, X. S. Wang, J. Xu, H. Y. Sun, Z. Z. Xu, and J. R. Qiu, "Microstructures induced in the bulk of SrTiO3 crystal by a femtosecond laser," Opt. Express 15, 2341-2347 (2007).
    [CrossRef] [PubMed]
  13. W. Watanabe and K. Itoh, "Motion of bubble in solid by femtosecond laser pulses," Opt. Express 10, 603-608 (2002).
    [PubMed]

2007 (2)

2006 (2)

W. J. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek and A. Y. Arai, "Self-assembled periodic subwavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

2005 (1)

B. Tan, Narayanswamy, R. Sivakumar and K. Venkatakrishnan, "Direct grating writing using femtosecond laser interference fringes formed at the focal point," J. Opt. A 7, 169-174 (2005).
[CrossRef]

2004 (2)

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiation by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, "Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanate ions," Quantum Elect. 31, 689-696 (2001).
[CrossRef]

H. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, "Arbitrary-lattice photonic crystals created by multiphoton microfabrication," Opt. Lett. 26, 325-327 (2001).
[CrossRef]

J. Qiu, C. Zhu, T. Nakaya, J. Si, F. Ogura, K. Kojima, and K. Hirao, "Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser," Appl. Phys. Lett. 79, 3567-3569 (2001).
[CrossRef]

1996 (1)

Appl. Phys. Lett. (1)

J. Qiu, C. Zhu, T. Nakaya, J. Si, F. Ogura, K. Kojima, and K. Hirao, "Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser," Appl. Phys. Lett. 79, 3567-3569 (2001).
[CrossRef]

J. Opt. A (1)

B. Tan, Narayanswamy, R. Sivakumar and K. Venkatakrishnan, "Direct grating writing using femtosecond laser interference fringes formed at the focal point," J. Opt. A 7, 169-174 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiation by ultrashort light pulses," Phys. Rev. Lett. 91, 247405 (2003).
[CrossRef] [PubMed]

Quantum Elect. (1)

E. V. Pestryakov, A. I. Alimpiev, and V. N. Matrosov, "Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanate ions," Quantum Elect. 31, 689-696 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The schematic graph for femtosecond laser inducing self-organized microgratings in the bulk SrTiO3 crystal.

Fig. 2.
Fig. 2.

A typical self-assembled micrograting induced at the focal depth of 200 μm beneath the sample surface by translating the laser focus along the direction perpendicular to the laser beam axis.

Fig. 3.
Fig. 3.

The dependence of the grating structure on the scanning velocity at a fixed laser pulse repetition rate.

Fig. 4.
Fig. 4.

The influence of the laser pulse repetition rate on the grating structures at a fixed scanning velocity.

Fig. 5.
Fig. 5.

A typical void string induced in the bulk SrTiO3 crystal by tightly focusing fs laser pulses through a 100× microscope objective.

Fig. 6.
Fig. 6.

The schematic of a void-moving model.

Fig. 7.
Fig. 7.

Two different grating structures induced by scanning the laser focus in two opposite directions.

Fig. 8.
Fig. 8.

The schematic of how the symmetry is formed.

Metrics