Abstract

Efficient laser-diode pumped picosecond self-Q-switched all-ceramic composite Yb:YAG/Cr4+:YAG microchip lasers with 0.72 MW peak power has been developed. Lasers with nearly diffraction-limited beam quality (M 2 < 1.09), oscillate at stable single- and multi- longitudinal-modes due to the combined etalon effects in the Yb:YAG and Cr4+:YAG parts of its binary structure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
    [Crossref]
  2. H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
    [Crossref]
  3. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
    [Crossref]
  4. H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
    [Crossref]
  5. D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic comoposited Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212 – 6216 (2005).
    [Crossref] [PubMed]
  6. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
    [Crossref]
  7. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Comp. 303–304, 393 – 400 (2000).
    [Crossref]
  8. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
    [Crossref]
  9. J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin. 104, 151 –158 (2003).
    [Crossref]
  10. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
    [Crossref]
  11. J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
    [Crossref]
  12. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
    [Crossref]
  13. T. Yanagitani, H. Yagi, and Y. Hiro, “Production of yttrium aluminium garnet fine powders for transparent YAG ceramic,” Japan Patent No. 10–101411 (April 21, 1998)
  14. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
    [Crossref]
  15. H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).
  16. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  17. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412 –1423 (1988).
    [Crossref]
  18. G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).
  19. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975 –1979 (2003).
    [Crossref]
  20. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861 –873 (1997).
    [Crossref]
  21. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

2007 (3)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

2006 (6)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

2005 (2)

D. Kracht, M. Frede, R. Wilhelm, and C. Fallnich, “Comparison of crystalline and ceramic comoposited Nd:YAG for high power diode end-pumping,” Opt. Express 13, 6212 – 6216 (2005).
[Crossref] [PubMed]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

2003 (2)

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975 –1979 (2003).
[Crossref]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin. 104, 151 –158 (2003).
[Crossref]

2002 (1)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Comp. 303–304, 393 – 400 (2000).
[Crossref]

1997 (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861 –873 (1997).
[Crossref]

1988 (1)

1976 (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).

Bass, M.

Bisson, J. F.

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

Bogomolova, G. A.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).

Brown, D. C.

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861 –873 (1997).
[Crossref]

Chen, W.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Cook, C.

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

Daneu, J. L.

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

Deng, P.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975 –1979 (2003).
[Crossref]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin. 104, 151 –158 (2003).
[Crossref]

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Dill III, C.

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

Dong, J.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
[Crossref]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975 –1979 (2003).
[Crossref]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin. 104, 151 –158 (2003).
[Crossref]

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Fallnich, C.

Frede, M.

Gan, F.

Hiro, Y.

T. Yanagitani, H. Yagi, and Y. Hiro, “Production of yttrium aluminium garnet fine powders for transparent YAG ceramic,” Japan Patent No. 10–101411 (April 21, 1998)

Kalisky, Y.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Kaminskii, A. A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

Kracht, D.

Kravchik, L.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Labbe, C.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Mao, Y.

Nakatsuka, M.

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

Rachum, U.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Risk, W. P.

Shirakawa, A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
[Crossref]

Taira, T.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[Crossref]

Takaichi, K.

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[Crossref]

Ueda, H. K, K.

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

Ueda, K.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

Vylegzhanin, D. N.

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).

Waichman, K.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Wilhelm, R.

Xu, J.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Yagi, H.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

T. Yanagitani, H. Yagi, and Y. Hiro, “Production of yttrium aluminium garnet fine powders for transparent YAG ceramic,” Japan Patent No. 10–101411 (April 21, 1998)

Yamasaki, Y.

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

Yanagitani, T.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

T. Yanagitani, H. Yagi, and Y. Hiro, “Production of yttrium aluminium garnet fine powders for transparent YAG ceramic,” Japan Patent No. 10–101411 (April 21, 1998)

Yoshida, K.

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Comp. 303–304, 393 – 400 (2000).
[Crossref]

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

Appl. Phys. B: Lasers Opt. (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B: Lasers Opt. 85, 513 – 518 (2006).
[Crossref]

Appl. Phys. Lett. (4)

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90, 121101 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW,” Appl. Phys. Lett. 90, 131105 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser,” Appl. Phys. Lett. 90, 191106 (2007).
[Crossref]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Efficient Yb3+:Y3Al5O12 ceramic microchip lasers,” Appl. Phys. Lett. 89, 091114 (2006).
[Crossref]

Electron. Lett. (1)

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser,” Electron. Lett. 42, 1154 – 1156 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861 –873 (1997).
[Crossref]

J. Alloys Comp. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloys Comp. 303–304, 393 – 400 (2000).
[Crossref]

J. Lumin. (2)

H. Yagi, J. F. Bisson, K. Ueda, and T. Yanagitani, “Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers,” J. Lumin. 121, 88 – 94 (2006).
[Crossref]

J. Dong and P. Deng, “The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal,” J. Lumin. 104, 151 –158 (2003).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (2)

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys., Part 1  45, 133 – 135 (2006).
[Crossref]

H. Yagi, K. Takaichi, H. K, K. Ueda, and T. Yanagitani, “ Side-pumped Nd3+:Y3Al5O12 composite ceramic laser,” Jpn. J. Appl. Phys., Part 2  45, L207 – L209 (2006).
[Crossref]

Laser Phys. (1)

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338 – 1344 (2005).

Opt. Express (1)

Opt. Mater. (1)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen,“Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets,” Opt. Mater. 19, 403 – 413 (2002).
[Crossref]

Sov. Phys. JETP (1)

G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Sov. Phys. JETP 42, 440 – 446 (1976).

Other (3)

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid- and high-power passively Q-switched microchip lasers,” in Advanced Solid State Lasers, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

T. Yanagitani, H. Yagi, and Y. Hiro, “Production of yttrium aluminium garnet fine powders for transparent YAG ceramic,” Japan Patent No. 10–101411 (April 21, 1998)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram for laser-diode end-pumped all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser.

Fig. 2.
Fig. 2.

Average output power as a function of the absorbed pump power for all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser. Inset (a) shows the output beam profile and transverse beam profile and (b) shows the measured beam quality factors.

Fig. 3.
Fig. 3.

Stimulated emission spectra under different pump powers in all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser.

Fig. 4.
Fig. 4.

(a) Oscilloscope trace of self-Q-switched all-ceramic composite Yb:YAG/Cr4+:YAG microchip laser pulse trains; (b) self-Q-switched laser pulse with 237 ps pulse width (FWHM) and 172 μJ pulse energy, corresponding to peak power of over 0.72 MW.

Fig. 5.
Fig. 5.

The pulse characteristics (pulse energy, pulse width, repetition rate and peak power) of laser-diode pumped all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser as a function of absorbed pump power.

Metrics