Abstract

Efficient laser-diode pumped picosecond self-Q-switched all-ceramic composite Yb:YAG/Cr4+:YAG microchip lasers with 0.72 MW peak power has been developed. Lasers with nearly diffraction-limited beam quality (M 2 < 1.09), oscillate at stable single- and multi- longitudinal-modes due to the combined etalon effects in the Yb:YAG and Cr4+:YAG parts of its binary structure.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka and K. Ueda, "Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser," Jpn. J. Appl. Phys. Part 1 45, 133 - 135 (2006).
    [CrossRef]
  2. H. Yagi, K. Takaichi, H. K, K. Ueda and T. Yanagitani, "Side-pumped Nd3+:Y3Al5O12 composite ceramic laser," Jpn. J. Appl. Phys. Part 2 45, L207 - L209 (2006).
    [CrossRef]
  3. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
    [CrossRef]
  4. H. Yagi, J. F. Bisson, K. Ueda and T. Yanagitani, "Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers," J. Lumin. 121, 88 - 94 (2006).
    [CrossRef]
  5. D. Kracht, M. Frede, R. Wilhelm and C. Fallnich, "Comparison of crystalline and ceramic comoposited Nd:YAG for high power diode end-pumping," Opt. Express 13, 6212 - 6216 (2005).
    [CrossRef] [PubMed]
  6. M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser," Appl. Phys. Lett. 90, 121101 (2007).
    [CrossRef]
  7. J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Comp. 303-304, 393 - 400 (2000).
    [CrossRef]
  8. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403 - 413 (2002).
    [CrossRef]
  9. J. Dong and P. Deng, "The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal," J. Lumin. 104, 151 -158 (2003).
    [CrossRef]
  10. J. Dong, A. Shirakawa and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
    [CrossRef]
  11. J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser," Electron. Lett. 42, 1154 - 1156 (2006).
    [CrossRef]
  12. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW," Appl. Phys. Lett. 90, 131105 (2007).
    [CrossRef]
  13. T. Yanagitani, H. Yagi and Y. Hiro, "Production of yttrium aluminium garnet fine powders for transparent YAG ceramic," Japan Patent No. 10-101411 (April 21, 1998)
  14. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser," Appl. Phys. Lett. 90, 191106 (2007).
    [CrossRef]
  15. H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani and A. A. Kaminskii, "The physical properties of composite YAG ceramics," Laser Phys. 15, 1338 - 1344 (2005).
  16. W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).
  17. W. P. Risk, "Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses," J. Opt. Soc. Am. B 5,1412 -1423 (1988).
    [CrossRef]
  18. G. A. Bogomolova, D. N. Vylegzhanin and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP  42, 440 - 446 (1976).
  19. J. Dong, M. Bass, Y. Mao, P. Deng and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,"J. Opt. Soc. Am. B 20, 1975 - 1979 (2003).
    [CrossRef]
  20. D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers," IEEE J. Quantum Electron. 33, 861 -873 (1997).
    [CrossRef]
  21. J. J. Zayhowski, C. DillIII, C. Cook and J. L. Daneu, "Mid- and high-power passively Q-switched microchip lasers," in Advanced Solid State Lasers, M. Fejer, H. Injeyan and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

2007

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser," Appl. Phys. Lett. 90, 121101 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW," Appl. Phys. Lett. 90, 131105 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser," Appl. Phys. Lett. 90, 191106 (2007).
[CrossRef]

2006

J. Dong, A. Shirakawa and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser," Electron. Lett. 42, 1154 - 1156 (2006).
[CrossRef]

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka and K. Ueda, "Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser," Jpn. J. Appl. Phys. Part 1 45, 133 - 135 (2006).
[CrossRef]

H. Yagi, K. Takaichi, H. K, K. Ueda and T. Yanagitani, "Side-pumped Nd3+:Y3Al5O12 composite ceramic laser," Jpn. J. Appl. Phys. Part 2 45, L207 - L209 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
[CrossRef]

H. Yagi, J. F. Bisson, K. Ueda and T. Yanagitani, "Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers," J. Lumin. 121, 88 - 94 (2006).
[CrossRef]

2005

D. Kracht, M. Frede, R. Wilhelm and C. Fallnich, "Comparison of crystalline and ceramic comoposited Nd:YAG for high power diode end-pumping," Opt. Express 13, 6212 - 6216 (2005).
[CrossRef] [PubMed]

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani and A. A. Kaminskii, "The physical properties of composite YAG ceramics," Laser Phys. 15, 1338 - 1344 (2005).

2003

J. Dong, M. Bass, Y. Mao, P. Deng and F. Gan, "Dependence of the Yb3+ emission cross section and lifetime on the temperature and concentration in ytterbium aluminum garnet,"J. Opt. Soc. Am. B 20, 1975 - 1979 (2003).
[CrossRef]

J. Dong and P. Deng, "The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal," J. Lumin. 104, 151 -158 (2003).
[CrossRef]

2002

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403 - 413 (2002).
[CrossRef]

2000

J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Comp. 303-304, 393 - 400 (2000).
[CrossRef]

1997

D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers," IEEE J. Quantum Electron. 33, 861 -873 (1997).
[CrossRef]

1988

1976

G. A. Bogomolova, D. N. Vylegzhanin and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP  42, 440 - 446 (1976).

Appl. Phys. B: Lasers Opt.

J. Dong, A. Shirakawa and K. Ueda, "Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser," Appl. Phys. B: Lasers Opt. 85, 513 - 518 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Tsunekane and T. Taira, "High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser," Appl. Phys. Lett. 90, 121101 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Efficient Yb3+:Y3Al5O12 ceramic microchip lasers," Appl. Phys. Lett. 89, 091114 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power > 150 kW," Appl. Phys. Lett. 90, 131105 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser," Appl. Phys. Lett. 90, 191106 (2007).
[CrossRef]

Electron. Lett.

J. Dong, A. Shirakawa, K. Takaichi, K. Ueda, H. Yagi, T. Yanagitani and A. A. Kaminskii, "All ceramic passively Q-switched Yb:YAG/Cr4+:YAG microchip laser," Electron. Lett. 42, 1154 - 1156 (2006).
[CrossRef]

IEEE J. Quantum Electron.

D. C. Brown, "Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers," IEEE J. Quantum Electron. 33, 861 -873 (1997).
[CrossRef]

J. Alloys Comp.

J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Comp. 303-304, 393 - 400 (2000).
[CrossRef]

J. Lumin.

H. Yagi, J. F. Bisson, K. Ueda and T. Yanagitani, "Y3Al5O12 ceramic absorbers for the suppression of parasitic oscillation in high-power Nd:YAG lasers," J. Lumin. 121, 88 - 94 (2006).
[CrossRef]

J. Dong and P. Deng, "The effect of Cr concentration on emission cross section and fluorescence lifetime in Cr,Yb:YAG crystal," J. Lumin. 104, 151 -158 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys

H. Yagi, T. Yanagitani, K. Yoshida, M. Nakatsuka and K. Ueda, "Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser," Jpn. J. Appl. Phys. Part 1 45, 133 - 135 (2006).
[CrossRef]

H. Yagi, K. Takaichi, H. K, K. Ueda and T. Yanagitani, "Side-pumped Nd3+:Y3Al5O12 composite ceramic laser," Jpn. J. Appl. Phys. Part 2 45, L207 - L209 (2006).
[CrossRef]

Laser Phys.

H. Yagi, K. Takaichi, K. Ueda, Y. Yamasaki, T. Yanagitani and A. A. Kaminskii, "The physical properties of composite YAG ceramics," Laser Phys. 15, 1338 - 1344 (2005).

Opt. Express

Opt. Mater.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong and W. Chen, "Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets," Opt. Mater. 19, 403 - 413 (2002).
[CrossRef]

Sov. Phys. JETP

G. A. Bogomolova, D. N. Vylegzhanin and A. A. Kaminskii, "Spectral and lasing investigations of garnets with Yb3+ ions," Sov. Phys. JETP  42, 440 - 446 (1976).

Other

W. Koechner, Solid State Laser Engineering (Springer-Verlag, Berlin, 1999).

T. Yanagitani, H. Yagi and Y. Hiro, "Production of yttrium aluminium garnet fine powders for transparent YAG ceramic," Japan Patent No. 10-101411 (April 21, 1998)

J. J. Zayhowski, C. DillIII, C. Cook and J. L. Daneu, "Mid- and high-power passively Q-switched microchip lasers," in Advanced Solid State Lasers, M. Fejer, H. Injeyan and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics (Optical Society of America, 1999), Paper TuC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram for laser-diode end-pumped all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser.

Fig. 2.
Fig. 2.

Average output power as a function of the absorbed pump power for all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser. Inset (a) shows the output beam profile and transverse beam profile and (b) shows the measured beam quality factors.

Fig. 3.
Fig. 3.

Stimulated emission spectra under different pump powers in all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser.

Fig. 4.
Fig. 4.

(a) Oscilloscope trace of self-Q-switched all-ceramic composite Yb:YAG/Cr4+:YAG microchip laser pulse trains; (b) self-Q-switched laser pulse with 237 ps pulse width (FWHM) and 172 μJ pulse energy, corresponding to peak power of over 0.72 MW.

Fig. 5.
Fig. 5.

The pulse characteristics (pulse energy, pulse width, repetition rate and peak power) of laser-diode pumped all-ceramic composite Yb:YAG/Cr4+:YAG self-Q-switched microchip laser as a function of absorbed pump power.

Metrics