Abstract

A technique we refer to as Elevation Information in Tail (EIT) has been developed to provide improved lidar altimetry from CALIPSO lidar data. The EIT technique is demonstrated using CALIPSO data and is applicable to other similar lidar systems with low-pass filters. The technique relies on an observed relation between the shape of the surface return signals (peak shape) and the detector photo-multiplier tube transient response (transient response tail). Application of the EIT to CALIPSO data resulted in an order of magnitude or better improvement in the CALIPSO land surface 30-meter elevation measurements. The results of EIT compared very well with the National Elevation Database (NED) high resolution elevation maps, and with the elevation measurements from the Shuttle Radar Topography Mission (SRTM).

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lidar reflectance from snow at 2.05  μm wavelength as measured by the JPL Airborne Laser Absorption Spectrometer

Gary D. Spiers, Robert T. Menzies, and Joseph C. Jacob
Appl. Opt. 55(8) 1978-1986 (2016)

Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data

Jiachen Ding, Ping Yang, Robert E. Holz, Steven Platnick, Kerry G. Meyer, Mark A. Vaughan, Yongxiang Hu, and Michael D. King
Opt. Express 24(1) 620-636 (2016)

Optical system design and integration of the Mars Observer Laser Altimeter

Luis Ramos-Izquierdo, Jack L. Bufton, and Patricia Hayes
Appl. Opt. 33(3) 307-322 (1994)

References

  • View by:
  • |
  • |
  • |

  1. Y. Hu, M. Vaughan, Z. Liu, B. Lin, P. Yang, D. Flittner, B. Hunt, R. Kuehn, J. Huang, D. Wu, S. Rodier, K. Powell, C. Trepte, and D. Winker, el al., “The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory,” Opt. Express,  15, 5327–5332 (2007).
    [Crossref] [PubMed]
  2. C. S. Gardner, “Target signatures for laser altimeters: An analysis,” Appl. Opt. 21, 448–453 (1982).
    [Crossref] [PubMed]
  3. D. J. Harding, J. L. Bufton, and J. J. Frawley, “Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover,” IEEE Trans. Geosci. Remote Sens. 32, 329–339.
  4. S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
    [Crossref]
  5. J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
    [Crossref]
  6. M. Werner, “Shuttle Radar Topography Mission (SRTM), Mission overview,” J. Telecom. (Frequenz) 55, 75–79 (2001).
  7. P. A. M. Berry, J. D. Garlick, and R. G. Smith, “Near-global validation of the SRTM DEM using satellite radar altimetry,” Remote Sensing of Environ. 106, 17–27 (2007).
    [Crossref]
  8. C. C. Carabajal and D. J. Harding, “ICESat Validation of Shuttle Radar Topography Mission C-band Digital Elevation Models,” Gephys. Res. Lett.,  32, L22S01, doi:10.1029/2005GL023957 (2005).
    [Crossref]

2007 (2)

2005 (1)

C. C. Carabajal and D. J. Harding, “ICESat Validation of Shuttle Radar Topography Mission C-band Digital Elevation Models,” Gephys. Res. Lett.,  32, L22S01, doi:10.1029/2005GL023957 (2005).
[Crossref]

2001 (1)

M. Werner, “Shuttle Radar Topography Mission (SRTM), Mission overview,” J. Telecom. (Frequenz) 55, 75–79 (2001).

1999 (1)

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
[Crossref]

1987 (1)

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

1982 (1)

Abshire, J. B.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

Berry, P. A. M.

P. A. M. Berry, J. D. Garlick, and R. G. Smith, “Near-global validation of the SRTM DEM using satellite radar altimetry,” Remote Sensing of Environ. 106, 17–27 (2007).
[Crossref]

Blair, J. B.

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
[Crossref]

Bufton, J. L.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

D. J. Harding, J. L. Bufton, and J. J. Frawley, “Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover,” IEEE Trans. Geosci. Remote Sens. 32, 329–339.

Carabajal, C. C.

C. C. Carabajal and D. J. Harding, “ICESat Validation of Shuttle Radar Topography Mission C-band Digital Elevation Models,” Gephys. Res. Lett.,  32, L22S01, doi:10.1029/2005GL023957 (2005).
[Crossref]

Cohen, S. C.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

Degnan, J. J.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

Flittner, D.

Frawley, J. J.

D. J. Harding, J. L. Bufton, and J. J. Frawley, “Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover,” IEEE Trans. Geosci. Remote Sens. 32, 329–339.

Gardner, C. S.

Garlick, J. D.

P. A. M. Berry, J. D. Garlick, and R. G. Smith, “Near-global validation of the SRTM DEM using satellite radar altimetry,” Remote Sensing of Environ. 106, 17–27 (2007).
[Crossref]

Garvin, J. B.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

Harding, D. J.

C. C. Carabajal and D. J. Harding, “ICESat Validation of Shuttle Radar Topography Mission C-band Digital Elevation Models,” Gephys. Res. Lett.,  32, L22S01, doi:10.1029/2005GL023957 (2005).
[Crossref]

D. J. Harding, J. L. Bufton, and J. J. Frawley, “Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover,” IEEE Trans. Geosci. Remote Sens. 32, 329–339.

Hofton, M. A.

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
[Crossref]

Hu, Y.

Huang, J.

Hunt, B.

Kuehn, R.

Lin, B.

Liu, Z.

Powell, K.

Rabine, D. L.

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
[Crossref]

Rodier, S.

Smith, R. G.

P. A. M. Berry, J. D. Garlick, and R. G. Smith, “Near-global validation of the SRTM DEM using satellite radar altimetry,” Remote Sensing of Environ. 106, 17–27 (2007).
[Crossref]

Trepte, C.

Vaughan, M.

Werner, M.

M. Werner, “Shuttle Radar Topography Mission (SRTM), Mission overview,” J. Telecom. (Frequenz) 55, 75–79 (2001).

Winker, D.

Wu, D.

Yang, P.

Appl. Opt. (1)

Gephys. Res. Lett. (1)

C. C. Carabajal and D. J. Harding, “ICESat Validation of Shuttle Radar Topography Mission C-band Digital Elevation Models,” Gephys. Res. Lett.,  32, L22S01, doi:10.1029/2005GL023957 (2005).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

D. J. Harding, J. L. Bufton, and J. J. Frawley, “Satellite laser altimetry of terrestrial topography: vertical accuracy as a function of surface slope, roughness, and cloud cover,” IEEE Trans. Geosci. Remote Sens. 32, 329–339.

S. C. Cohen, J. J. Degnan, J. L. Bufton, J. B. Garvin, and J. B. Abshire, “The Geoscience Laser Altimetry/Ranging System,” IEEE Trans. Geosci. Remote Sens. 25, 581–592 (1987).
[Crossref]

ISPRS J. Photogramm. Remote Sens. (1)

J. B. Blair, D. L. Rabine, and M. A. Hofton, “The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography,” ISPRS J. Photogramm. Remote Sens. 54, 115–122 (1999).
[Crossref]

J. Telecom. (Frequenz) (1)

M. Werner, “Shuttle Radar Topography Mission (SRTM), Mission overview,” J. Telecom. (Frequenz) 55, 75–79 (2001).

Opt. Express (1)

Remote Sensing of Environ. (1)

P. A. M. Berry, J. D. Garlick, and R. G. Smith, “Near-global validation of the SRTM DEM using satellite radar altimetry,” Remote Sensing of Environ. 106, 17–27 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Surface peak signal and detector transient response relation for CALIPSO single lidar shots. The y-axis is the range bin immediately after the peak, β(p+1), divided by the peak signal, β(p). The x-axis is the integrated return of ten range bins starting from the second range bin after the peak, 0.5β(tail)/β(p+1). The left and right panels are for two geographic locations of different orbits, with very different land surfaces.

Fig. 2.
Fig. 2.

CALIPSO’s transient response (thick blue curve) derived from surface tail/peak ratios of all land surface data, scaled to the peak value. The red, green and black curves are CALIPSO surface returns at 30-meter vertical resolution, while the surface is at different locations within the 30-meter surface bin.

Fig. 3.
Fig. 3.

Relation between tail/peak ratios (y-axis) and the distance between land surface and center of CALIPSO’s 30 meter surface bin.

Fig. 4.
Fig. 4.

Surface elevation difference (m) between the two methods as an example. The difference between the two methods is normally less than 0.5 meter when the peak signal is not saturated. The difference increases for highly reflecting snow surfaces when the peak signal saturates and affects the accuracy of the Peak Signal Shape Method.

Fig. 5.
Fig. 5.

The 1 Arc second USGS national elevation database (NED) land surface elevation map around the CALIPSO orbit track (while line). The unit of the elevation in the color-bar is meter.

Fig. 6.
Fig. 6.

The land surface elevation comparisons among the standard 30 meter CALIPSO data product (yellow dots), the 3 Arc second surface elevation from Interferometric Space Radar Topography Mission (SRTM) (blue dot-dashed line), the 1 Arc second surface elevation map from National Elevation Database (NED) (light blue line), and the single shot CALIPSO land surface elevation derived from the EIT technique (red line).

Fig. 7.
Fig. 7.

Land surface elevation individual differences (dots) and differences averaged over 5 km along track (line): CALIPSO EIT technique vs 1 Arc second NED (red); 3 Arc second SRTM (blue) vs 1 Arc second NED (green).

Fig. 8.
Fig. 8.

Land surface elevation comparisons between EIT technique with single shot CALIPSO (red line) data and SRTM 3 Arc Second data (green dots).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M 1 = [ β ( p + 1 ) β ( p 1 ) ] β ( p )
M 2 = 3 12 β ( p + i ) 2 β ( p + 1 )

Metrics