Abstract

Photopolymerisation by scanning a focused laser beam is a powerful method to build structures of arbitrary complexity with submicrometer resolution. We introduce parallel photopolymerisation to enhance the efficiency. Instead of multidimensional scanning of a single focus, the structure is generated simultaneously with diffractive patterns. We used fixed diffractive optical elements (DOEs), kinoforms, and Spatial Light Modulators (SLMs). The possibilities of photopolymerisation using SLM were investigated: the added flexibility using the programmable device is demonstrated. By using these DOEs, straight and helical cross shaped columns were produced with a single scan at a rate about an order of magnitude faster than by simple scanning. The produced helical structures could be rotated by optical tweezers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, M. J. Sailor, "Local heating of discrete droplets using magnetic porous silicon-based photonic crystals," J. Am. Chem. Soc. 128, 7938-7946 (2006)
    [CrossRef] [PubMed]
  2. T. A. J. Duke and R. H. Austin, "Microfabricated sieve for the continuous sorting of macromolecules," Phys. Rev. Lett. 80, 1552-1555 (1998)
    [CrossRef]
  3. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, S. R. Quake, "A microfabricated fluorescence-activated cell sorter," Nature Biotech. 17, 1109-1111 (1999)
    [CrossRef]
  4. B. J. Kirby, T. J. Shepodd, E. F. Hasselbrink Jr., "Voltage-addressable on/ off microvalves for high-pressure microchip separations," J. Chromatography A  979, 147-154 (2002)
    [CrossRef]
  5. R. C. Gauthier, R. N. Tait, H. Mende, C. Pawlowicz, "Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems," Appl. Opt. 40, 930-937 (2001)
    [CrossRef]
  6. E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, "Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining," Appl. Phys. Lett. 64, 2209-2210 (1994)
    [CrossRef]
  7. J. Voldman, M. L. Gray, M. A. Schmidt, "Microfabrication in Biology and Medicine," Annu. Rev. Biomed. Eng. 1, 401-425 (1999)
    [CrossRef]
  8. M. C. Gower, "Industrial applications of laser micromachining," Opt. Express 7, 56-67 (2000)
    [CrossRef] [PubMed]
  9. S. Maruo and S. Kawata, "Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication," J. Microelectromech. Sys. 7, 411-415 (1998)
    [CrossRef]
  10. S. Kawata, H. B. Sun, T. Tanaka, K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001)
    [CrossRef] [PubMed]
  11. M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, "Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography," Opt. Mater. 27, 359-364 (2004)
    [CrossRef]
  12. S. Maruo, O. Nakamura, S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerisation," Opt. Lett. 22, 132-134 (1997)
    [CrossRef] [PubMed]
  13. L. Kelemen, S. Valkai, P. Ormos, "Integrated optical motor," Appl. Opt. 45, 2777-2780 (2006)
    [CrossRef] [PubMed]
  14. H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa, R. Kaneko, "Real three-dimensional microstructures fabricated by photopolymerisation of resins through two-photon absorption," Opt. Lett. 25, 1110-1112 (2000)
    [CrossRef]
  15. S. Maruo, K. Ikuta, H. Korogi, "Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography," J. Microelectromech. Sys. 12, 533-539 (2003)
    [CrossRef]
  16. P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-151 (2001)
    [CrossRef]
  17. P. Galajda and P. Ormos, "Rotation of microscopic propellers in laser tweezers," J. Opt. B. 4, S78-S81 (2002)
    [CrossRef]
  18. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express  12, 220-226 (2004)
    [CrossRef] [PubMed]
  19. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005)
    [CrossRef] [PubMed]

2006

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, M. J. Sailor, "Local heating of discrete droplets using magnetic porous silicon-based photonic crystals," J. Am. Chem. Soc. 128, 7938-7946 (2006)
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, P. Ormos, "Integrated optical motor," Appl. Opt. 45, 2777-2780 (2006)
[CrossRef] [PubMed]

2005

2004

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express  12, 220-226 (2004)
[CrossRef] [PubMed]

M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, "Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography," Opt. Mater. 27, 359-364 (2004)
[CrossRef]

2003

S. Maruo, K. Ikuta, H. Korogi, "Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography," J. Microelectromech. Sys. 12, 533-539 (2003)
[CrossRef]

2002

P. Galajda and P. Ormos, "Rotation of microscopic propellers in laser tweezers," J. Opt. B. 4, S78-S81 (2002)
[CrossRef]

B. J. Kirby, T. J. Shepodd, E. F. Hasselbrink Jr., "Voltage-addressable on/ off microvalves for high-pressure microchip separations," J. Chromatography A  979, 147-154 (2002)
[CrossRef]

2001

R. C. Gauthier, R. N. Tait, H. Mende, C. Pawlowicz, "Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems," Appl. Opt. 40, 930-937 (2001)
[CrossRef]

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001)
[CrossRef] [PubMed]

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-151 (2001)
[CrossRef]

2000

1999

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, S. R. Quake, "A microfabricated fluorescence-activated cell sorter," Nature Biotech. 17, 1109-1111 (1999)
[CrossRef]

J. Voldman, M. L. Gray, M. A. Schmidt, "Microfabrication in Biology and Medicine," Annu. Rev. Biomed. Eng. 1, 401-425 (1999)
[CrossRef]

1998

S. Maruo and S. Kawata, "Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication," J. Microelectromech. Sys. 7, 411-415 (1998)
[CrossRef]

T. A. J. Duke and R. H. Austin, "Microfabricated sieve for the continuous sorting of macromolecules," Phys. Rev. Lett. 80, 1552-1555 (1998)
[CrossRef]

1997

1994

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, "Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining," Appl. Phys. Lett. 64, 2209-2210 (1994)
[CrossRef]

Annu. Rev. Biomed. Eng.

J. Voldman, M. L. Gray, M. A. Schmidt, "Microfabrication in Biology and Medicine," Annu. Rev. Biomed. Eng. 1, 401-425 (1999)
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Galajda and P. Ormos, "Complex micromachines produced and driven by light," Appl. Phys. Lett. 78, 249-151 (2001)
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, O. Ohguchi, "Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining," Appl. Phys. Lett. 64, 2209-2210 (1994)
[CrossRef]

J. Am. Chem. Soc.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, M. J. Sailor, "Local heating of discrete droplets using magnetic porous silicon-based photonic crystals," J. Am. Chem. Soc. 128, 7938-7946 (2006)
[CrossRef] [PubMed]

J. Chromatography A

B. J. Kirby, T. J. Shepodd, E. F. Hasselbrink Jr., "Voltage-addressable on/ off microvalves for high-pressure microchip separations," J. Chromatography A  979, 147-154 (2002)
[CrossRef]

J. Microelectromech. Sys.

S. Maruo and S. Kawata, "Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication," J. Microelectromech. Sys. 7, 411-415 (1998)
[CrossRef]

S. Maruo, K. Ikuta, H. Korogi, "Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography," J. Microelectromech. Sys. 12, 533-539 (2003)
[CrossRef]

J. Opt. B.

P. Galajda and P. Ormos, "Rotation of microscopic propellers in laser tweezers," J. Opt. B. 4, S78-S81 (2002)
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, K. Takada, "Finer features for functional microdevices," Nature 412, 697-698 (2001)
[CrossRef] [PubMed]

Nature Biotech.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, S. R. Quake, "A microfabricated fluorescence-activated cell sorter," Nature Biotech. 17, 1109-1111 (1999)
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Straub, L. H. Nguyen, A. Fazlic, M. Gu, "Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography," Opt. Mater. 27, 359-364 (2004)
[CrossRef]

Phys. Rev. Lett.

T. A. J. Duke and R. H. Austin, "Microfabricated sieve for the continuous sorting of macromolecules," Phys. Rev. Lett. 80, 1552-1555 (1998)
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1641 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a)-(c): The arrangements of the focal spots of the focused beams split by the DOEs. (a): generated by the SLM and used to polymerise the test structures, (b): made by the SLM to produce the straight and the helical columns, (c): generated by the kinoform. Circular arrows indicate the pattern rotation to make the helical columns. The arrangements were otherwise stationary. (d)-(f): the objects to be polymerised. (d): test structure, (e): the straight column and (f): the helical column.

Fig. 2.
Fig. 2.

Layout of the photopolymerising optical setup using (a) kinoform and (b) SLM. SH: shutter, fs: 150 fs laser beam, L: lenses of the relay optics (fL and fL2=300 mm, fL1=30 mm), K: kinoform, SLM: spatial light modulator, A: aperture, O: 100x magnification, 1.25NA objective on a 1D piezo translator, S: photopolymer sample on an X-Y piezo stage. The femtosecond laser beam is split into several beams either by the mechanically rotated kinoform or by the computer controlled SLM. The beams then form individual focal spots inside the photopolymer.

Fig. 3.
Fig. 3.

SEM images of the test structures. (a)-(c): polymerised with 2 mW laser power in each beam and 3 μm/s scanning speed. The focal spot distance (d1) was 1 μm, 1.3 μm and 1.7 μm respectively. (d): The parameters are: 2 mW power, 1 μm/s speed and 1.3 μm focal spot distance. The effect of lower scanning speed is visible in (d) on the appearance of additional fringes between the polymerised rods. White bars represent 5 μm.

Fig. 4.
Fig. 4.

(a)-(c) SEM and (d)-(f) optical microscopy images of the column structures made by the SLM. (a) and (b): straight, (c)-(f): helical columns. The focal spot separation (d2) is 1.25 μm for all images, and the scanning speed is 3 μm/s. Laser powers: (a): 6.5 mW, (b)-(d): 4.5 mW, (e) and (f): 3.3 mW. (f): four snapshots of a rotating helical column trapped by a focused laser beam of about 20 mW. The time gap between the images is 160 ms; the dotted line helps determine the actual orientation of the column. The white bars represent 5 μm.

Fig. 5.
Fig. 5.

Optical microscopic images of the straight and helical column structures made by the rotating kinoform. The focal spot separation (d3) was always 1.3 μm. (a) and (b): straight columns as viewed from below; laser powers 30 mW and 18 mW, respectively, scanning speed: 0.75 μm/s for both. (c) and (d): helical columns as viewed from the side while laying on the glass surface. Laser power: 12 mW, scanning speed 2 μm/s for both structures. (e)-(i): the same structure as in (c), but trapped and rotated clockwise by the beam of a laser tweezer [AVI, 1.6MB]. The time gap between the images is 160 ms; the dashed line represents the position of a diameter of the column in each frame. Bar is 6 μm. [Media 1]

Metrics