Abstract

Photopolymerisation by scanning a focused laser beam is a powerful method to build structures of arbitrary complexity with submicrometer resolution. We introduce parallel photopolymerisation to enhance the efficiency. Instead of multidimensional scanning of a single focus, the structure is generated simultaneously with diffractive patterns. We used fixed diffractive optical elements (DOEs), kinoforms, and Spatial Light Modulators (SLMs). The possibilities of photopolymerisation using SLM were investigated: the added flexibility using the programmable device is demonstrated. By using these DOEs, straight and helical cross shaped columns were produced with a single scan at a rate about an order of magnitude faster than by simple scanning. The produced helical structures could be rotated by optical tweezers.

© 2007 Optical Society of America

PDF Article
OSA Recommended Articles
Stable trapping and manually controlled rotation of an asymmetric or birefringent microparticle using dual-mode split-beam optical tweezers

Fang-Wen Sheu, Tzu-Kai Lan, Yu-Chung Lin, Shiung Chen, and Chyung Ay
Opt. Express 18(14) 14724-14729 (2010)

Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change

Martin Persson, David Engström, Anders Frank, Jan Backsten, Jörgen Bengtsson, and Mattias Goksör
Opt. Express 18(11) 11250-11263 (2010)

Holographic optical trapping

David G. Grier and Yael Roichman
Appl. Opt. 45(5) 880-887 (2006)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
    [Crossref] [PubMed]
  2. T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules” Phys. Rev. Lett. 80, 1552–1555 (1998)
    [Crossref]
  3. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
    [Crossref]
  4. B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
    [Crossref]
  5. R. C. Gauthier, R. N. Tait, H. Mende, and C. Pawlowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems” Appl. Opt. 40, 930–937 (2001)
    [Crossref]
  6. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
    [Crossref]
  7. J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
    [Crossref]
  8. M. C. Gower, “Industrial applications of laser micromachining” Opt. Express 7, 56–67 (2000)
    [Crossref] [PubMed]
  9. S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication” J. Microelectromech. Sys. 7, 411–415 (1998)
    [Crossref]
  10. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
    [Crossref] [PubMed]
  11. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
    [Crossref]
  12. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerisation” Opt. Lett. 22, 132–134 (1997)
    [Crossref] [PubMed]
  13. L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor” Appl. Opt. 45, 2777–2780 (2006)
    [Crossref] [PubMed]
  14. H. B. Sun, T. Kawakami, Y. Xu, J. Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. Kaneko, “Real three-dimensional microstructures fabricated by photopolymerisation of resins through two-photon absorption” Opt. Lett. 25, 1110–1112 (2000)
    [Crossref]
  15. S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
    [Crossref]
  16. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light” Appl. Phys. Lett. 78, 249–151 (2001)
    [Crossref]
  17. P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers”, J. Opt. B. 4, S78–S81 (2002)
    [Crossref]
  18. J. Leach, G. Sinclair, P. Jordan, J. Courtial, and M. J. Padgett, “3D manipulation of particles into crystal structures using holographic optical tweezers” Opt. Express,  12, 220–226 (2004)
    [Crossref] [PubMed]
  19. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glückstad, “Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps” Opt. Express 13, 6899–6904 (2005)
    [Crossref] [PubMed]

2006 (2)

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor” Appl. Opt. 45, 2777–2780 (2006)
[Crossref] [PubMed]

2005 (1)

2004 (2)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

J. Leach, G. Sinclair, P. Jordan, J. Courtial, and M. J. Padgett, “3D manipulation of particles into crystal structures using holographic optical tweezers” Opt. Express,  12, 220–226 (2004)
[Crossref] [PubMed]

2003 (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
[Crossref]

2002 (2)

B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
[Crossref]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers”, J. Opt. B. 4, S78–S81 (2002)
[Crossref]

2001 (3)

R. C. Gauthier, R. N. Tait, H. Mende, and C. Pawlowicz, “Optical selection, manipulation, trapping, and activation of a microgear structure for applications in micro-optical-electromechanical systems” Appl. Opt. 40, 930–937 (2001)
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light” Appl. Phys. Lett. 78, 249–151 (2001)
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
[Crossref] [PubMed]

2000 (2)

1999 (2)

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
[Crossref]

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

1998 (2)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication” J. Microelectromech. Sys. 7, 411–415 (1998)
[Crossref]

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules” Phys. Rev. Lett. 80, 1552–1555 (1998)
[Crossref]

1997 (1)

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

Arnold, F. H.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Austin, R. H.

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules” Phys. Rev. Lett. 80, 1552–1555 (1998)
[Crossref]

Bhatia, S. N.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Bøggild, P.

Courtial, J.

Derfus, A. M.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Duke, T. A. J.

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules” Phys. Rev. Lett. 80, 1552–1555 (1998)
[Crossref]

Fazlic, A.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

Fu, A. Y.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Galajda, P.

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers”, J. Opt. B. 4, S78–S81 (2002)
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light” Appl. Phys. Lett. 78, 249–151 (2001)
[Crossref]

Gammelgaard, L.

Gauthier, R. C.

Glückstad, J.

Gower, M. C.

Gray, M. L.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
[Crossref]

Gu, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

Hasselbrink, E. F.

B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
[Crossref]

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
[Crossref]

Jordan, P.

Kaneko, R.

Kawakami, T.

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
[Crossref] [PubMed]

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication” J. Microelectromech. Sys. 7, 411–415 (1998)
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerisation” Opt. Lett. 22, 132–134 (1997)
[Crossref] [PubMed]

Kelemen, L.

Kirby, B. J.

B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
[Crossref]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
[Crossref]

Leach, J.

Maruo, S.

S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
[Crossref]

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication” J. Microelectromech. Sys. 7, 411–415 (1998)
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerisation” Opt. Lett. 22, 132–134 (1997)
[Crossref] [PubMed]

Matuso, S.

Mende, H.

Misawa, H.

Miwa, M.

Nakamura, O.

Nguyen, L. H.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

Ormos, P.

L. Kelemen, S. Valkai, and P. Ormos, “Integrated optical motor” Appl. Opt. 45, 2777–2780 (2006)
[Crossref] [PubMed]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers”, J. Opt. B. 4, S78–S81 (2002)
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light” Appl. Phys. Lett. 78, 249–151 (2001)
[Crossref]

Padgett, M. J.

Park, J. H.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Pawlowicz, C.

Perch-Nielsen, I. R.

Quake, S. R.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Rodrigo, P. J.

Sailor, M. J.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Scherer, A.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Schmidt, M. A.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
[Crossref]

Segal, E.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Shepodd, T. J.

B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
[Crossref]

Sinclair, G.

Spence, C.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Straub, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

Sun, H. B.

Tait, R. N.

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
[Crossref] [PubMed]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
[Crossref] [PubMed]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

Valkai, S.

Vecchio, K. S.

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

Voldman, J.

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
[Crossref]

Xu, Y.

Ye, J. Y.

Annu. Rev. Biomed. Eng. (1)

J. Voldman, M. L. Gray, and M. A. Schmidt, “Microfabrication in Biology and Medicine” Annu. Rev. Biomed. Eng. 1, 401–425 (1999)
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining” Appl. Phys. Lett. 64, 2209–2210 (1994)
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light” Appl. Phys. Lett. 78, 249–151 (2001)
[Crossref]

J. Am. Chem. Soc. (1)

J. H. Park, A. M. Derfus, E. Segal, K. S. Vecchio, S. N. Bhatia, and M. J. Sailor, “Local heating of discrete droplets using magnetic porous silicon-based photonic crystals” J. Am. Chem. Soc. 128, 7938–7946 (2006)
[Crossref] [PubMed]

J. Chromatography A (1)

B. J. Kirby, T. J. Shepodd, and E. F. Hasselbrink, “Voltage-addressable on/off microvalves for high-pressure microchip separations” J. Chromatography A,  979, 147–154 (2002)
[Crossref]

J. Microelectromech. Sys. (2)

S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerisation for three-dimensional microfabrication” J. Microelectromech. Sys. 7, 411–415 (1998)
[Crossref]

S. Maruo, K. Ikuta, and H. Korogi, “Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography” J. Microelectromech. Sys. 12, 533–539 (2003)
[Crossref]

J. Opt. B. (1)

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers”, J. Opt. B. 4, S78–S81 (2002)
[Crossref]

Nature (1)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices” Nature 412, 697–698 (2001)
[Crossref] [PubMed]

Nature Biotech. (1)

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter” Nature Biotech. 17, 1109–1111 (1999)
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon stereolithography” Opt. Mater. 27, 359–364 (2004)
[Crossref]

Phys. Rev. Lett. (1)

T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules” Phys. Rev. Lett. 80, 1552–1555 (1998)
[Crossref]

Supplementary Material (1)

» Media 1: AVI (1641 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics