Abstract

We report the development of a compact time-resolved system for the measurement of the optical properties of highly scattering media over a bandwidth of 600–1000 nm. The instrument is based on a fiber laser generating supercontinuum radiation, that is spectrally dispersed and sequentially used to illuminate the sample. A single photon avalanche photo-diode in combination with time correlated single-photon counting is used to recover the time-dispersion curve at each wavelength, both fitted by the diffusion equation. Transmittance measurements performed on calibrated epoxy phantoms and in-vivo on female breast are presented, showing good agreement with previous reports.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt. 12, 14021 (2007).
    [CrossRef]
  2. S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, "Multispectral tissue characterization with timeresolved detection of diffusely scattered white light," Opt. Lett. 18, 1697-1699 (1993).
    [CrossRef] [PubMed]
  3. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, R. Cubeddu, "Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media," Rev. Sci. Instrum. 78, 053103 (2007).
    [CrossRef] [PubMed]
  4. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steadystate diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
    [CrossRef] [PubMed]
  5. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
  8. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, "Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber," Opt. Lett. 29, 2405-2407 (2004).
    [CrossRef] [PubMed]
  9. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, "Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber," Opt. Express 12, 4103-4112 (2004).
    [CrossRef] [PubMed]
  10. T. Binzoni, C. Courvoisier, R. Giust, G. Tribillon, T. Gharbi, J. C. Hebden, T. S. Leung, J. Roux, and D. T. Delpy, "Anisotropic photon migration in human skeletal muscle," Phys. Med. Biol. 51, N79-N90 (2006).
    [CrossRef] [PubMed]
  11. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    [CrossRef]
  12. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Moller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avriller, M. Whelan, and H. Stamm, "Performance assessment of photon migration instruments: the MEDPHOT protocol," Appl. Opt. 44, 2104-2114, (2005).
    [CrossRef] [PubMed]

2007 (2)

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt. 12, 14021 (2007).
[CrossRef]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, R. Cubeddu, "Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media," Rev. Sci. Instrum. 78, 053103 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2000 (2)

1999 (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steadystate diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

1994 (1)

1993 (1)

Appl. Opt. (2)

J. Biomed. Opt. (1)

P. Taroni, D. Comelli, A. Pifferi, A. Torricelli, R. Cubeddu, "Absorption of collagen: effects on the estimate of breast composition and related diagnostic implications," J. Biomed. Opt. 12, 14021 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steadystate diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, R. Cubeddu, "Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media," Rev. Sci. Instrum. 78, 053103 (2007).
[CrossRef] [PubMed]

Other (1)

T. Binzoni, C. Courvoisier, R. Giust, G. Tribillon, T. Gharbi, J. C. Hebden, T. S. Leung, J. Roux, and D. T. Delpy, "Anisotropic photon migration in human skeletal muscle," Phys. Med. Biol. 51, N79-N90 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

System layout. Shown in Fig.: prism (P), lens (L), pinhole(PH), neutral density variable filter (ND), fiber connector (FC), beam splitter (BS), optical spectrum analyzer(OMA), single photon avalanche diode (SPAD), time correlated single photon counting board (TC-SPC).

Fig. 2.
Fig. 2.

Measured power at the sample (red circles connected by lines) and spectral width (blue circles) of the 120 wavelength bands.

Fig. 3.
Fig. 3.

Absorption spectra of the phantoms. The absorption increases with toner concentration (indicated in the label) and the scattering is kept constant. The solid lines represent the expected values.

Fig. 4.
Fig. 4.

Reduced scattering spectra of the phantoms. The scattering is increasing with titanium oxyde concentration (values are shown in the label) and absorption is kept constant. The solid lines represent the expected values.

Fig. 5.
Fig. 5.

Absorption (blue) and reduced scattering spectra (red) of the volunteer breast. The solid lines are the fitted spectra.

Metrics