Abstract

A high-power continuous-wave coherent light source at 545.5nm is described. We use 8.3W from a solid-state ytterbium-doped single-mode fiber oscillator/amplifier system as input into an external frequency doubling stage. This system produces up to 4.1 W of stable green single-frequency laser radiation. We characterize the light source by performing absorption spectroscopy on iodine across the full tuning range of the fiber laser and saturation spectroscopy on one strong iodine line of the doppler-broadened spectrum.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. W. Etzel, H. W. Gandy, and R. J. Ginther, "Stimulated emission of infrared radiation from ytterbium-activated silica glass," Appl. Opt. 1, 534-536 (1962).
    [CrossRef]
  2. D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "An ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm," J. Mod. Opt. 37, 517-525 (1990).
    [CrossRef]
  3. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).
    [CrossRef] [PubMed]
  4. Y.-X. Fan, F.-Y. Lu, S.-L. Hu, K.-C. Lu, H.-J. Wang, X.-Y. Dong, J.-L. He, and H.-T. Wang, " Tunable high-peakpower, high-energy hybrid Q-switched double-clad fiber laser," Opt. Lett. 29, 724-726 (2004).
    [CrossRef] [PubMed]
  5. F.  Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Opt. Express 11, 3550-3554 (2003).
    [CrossRef] [PubMed]
  6. G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, "A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm," Appl. Phys. B 78, 145-156 (2004).
    [CrossRef]
  7. S. Bordais, S. Grot, Y. Jaouën, P. Besnard, and M. Le Flohic, "Double-clad 10-W Yb3+-doped fiber master oscillator power fiber amplifier for 3He optical pumping," Appl. Opt. 43, 2168-2174 (2004).
    [CrossRef] [PubMed]
  8. M. Batz, S. Baeßler, W. Heil, E. W. Otten, D. Rudersdorf, J. Schmiedeskamp, Y. Sobolev, and M. Wolf, "3He Spin Filter for Neutrons," J. Res. Natl. Inst. Stand. Technol. 110, 293-298 (2005).
    [CrossRef]
  9. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hansch, and T. Schätz, "High power all solid state laser system near 280 nm," Appl. Phys. B 84, 371-373 (2006).
    [CrossRef]
  10. J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, "Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser," Metrologia 43, 294-298 (2006).
    [CrossRef]
  11. P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, "Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source," Opt. Commun. 176, 453-458 (2000).
    [CrossRef]
  12. K. S. E. Eikema, J. Walz, and T. W. Hansch, "Continuous Coherent Lyman- α Excitation of Atomic Hydrogen," Phys. Rev. Lett. 86, 5679-5682 (2001).
    [CrossRef] [PubMed]
  13. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W . Hänsch, "750mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury," Opt. Lett. 32, 955-957 (2007).
    [CrossRef] [PubMed]
  14. E. Zanger, R. M¨uller, B. Liu, and W. Gries, "Diode-pumped industrial high-power cw all solid-state laser at 266 nm," SPIE 3862, 255-261 (1999).
    [CrossRef]
  15. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  16. T. Freegarde and C. Zimmermann, "On the design of enhancement cavities for second harmonic generation," Opt. Commun. 199, 435-446 (2001).
    [CrossRef]
  17. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800 - 20000 cm-1 (Editions du Centre National de la Recherche Scientifique (CNRS), Paris, 1978).
    [PubMed]
  18. P. W. Smith and T. W. H¨ansch, "Cross-Relaxation Effects in the Saturation of the 6328-°A Neon-Laser Line," Phys. Rev. Lett. 26, 740-743 (1971).
    [CrossRef]

2007 (1)

2006 (2)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hansch, and T. Schätz, "High power all solid state laser system near 280 nm," Appl. Phys. B 84, 371-373 (2006).
[CrossRef]

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, "Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser," Metrologia 43, 294-298 (2006).
[CrossRef]

2005 (1)

M. Batz, S. Baeßler, W. Heil, E. W. Otten, D. Rudersdorf, J. Schmiedeskamp, Y. Sobolev, and M. Wolf, "3He Spin Filter for Neutrons," J. Res. Natl. Inst. Stand. Technol. 110, 293-298 (2005).
[CrossRef]

2004 (4)

2003 (1)

2001 (2)

K. S. E. Eikema, J. Walz, and T. W. Hansch, "Continuous Coherent Lyman- α Excitation of Atomic Hydrogen," Phys. Rev. Lett. 86, 5679-5682 (2001).
[CrossRef] [PubMed]

T. Freegarde and C. Zimmermann, "On the design of enhancement cavities for second harmonic generation," Opt. Commun. 199, 435-446 (2001).
[CrossRef]

2000 (1)

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, "Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source," Opt. Commun. 176, 453-458 (2000).
[CrossRef]

1999 (1)

E. Zanger, R. M¨uller, B. Liu, and W. Gries, "Diode-pumped industrial high-power cw all solid-state laser at 266 nm," SPIE 3862, 255-261 (1999).
[CrossRef]

1990 (1)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "An ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm," J. Mod. Opt. 37, 517-525 (1990).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1971 (1)

P. W. Smith and T. W. H¨ansch, "Cross-Relaxation Effects in the Saturation of the 6328-°A Neon-Laser Line," Phys. Rev. Lett. 26, 740-743 (1971).
[CrossRef]

1962 (1)

Appl. Opt. (2)

Appl. Phys. B (3)

G. Tastevin, S. Grot, E. Courtade, S. Bordais, and P.-J. Nacher, "A broadband ytterbium-doped tunable fiber laser for 3He optical pumping at 1083 nm," Appl. Phys. B 78, 145-156 (2004).
[CrossRef]

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hansch, and T. Schätz, "High power all solid state laser system near 280 nm," Appl. Phys. B 84, 371-373 (2006).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

J. Mod. Opt. (1)

D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, and A. C. Tropper, "An ytterbium-doped monomode fibre laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm," J. Mod. Opt. 37, 517-525 (1990).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

M. Batz, S. Baeßler, W. Heil, E. W. Otten, D. Rudersdorf, J. Schmiedeskamp, Y. Sobolev, and M. Wolf, "3He Spin Filter for Neutrons," J. Res. Natl. Inst. Stand. Technol. 110, 293-298 (2005).
[CrossRef]

Metrologia (1)

J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, "Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser," Metrologia 43, 294-298 (2006).
[CrossRef]

Opt. Commun. (2)

P. Cancio Pastor, P. Zeppini, A. Arie, P. De Natale, G. Giusfredi, G. Rosenman, and M. Inguscio, "Sub-Doppler spectroscopy of molecular iodine around 541 nm with a novel solid state laser source," Opt. Commun. 176, 453-458 (2000).
[CrossRef]

T. Freegarde and C. Zimmermann, "On the design of enhancement cavities for second harmonic generation," Opt. Commun. 199, 435-446 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

P. W. Smith and T. W. H¨ansch, "Cross-Relaxation Effects in the Saturation of the 6328-°A Neon-Laser Line," Phys. Rev. Lett. 26, 740-743 (1971).
[CrossRef]

K. S. E. Eikema, J. Walz, and T. W. Hansch, "Continuous Coherent Lyman- α Excitation of Atomic Hydrogen," Phys. Rev. Lett. 86, 5679-5682 (2001).
[CrossRef] [PubMed]

SPIE (1)

E. Zanger, R. M¨uller, B. Liu, and W. Gries, "Diode-pumped industrial high-power cw all solid-state laser at 266 nm," SPIE 3862, 255-261 (1999).
[CrossRef]

Other (1)

S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molecule d’iode 14800 - 20000 cm-1 (Editions du Centre National de la Recherche Scientifique (CNRS), Paris, 1978).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup. WM, wavelength meter; FC, fiber collimator; λ/4, λ/2, wave plates; PBC, NPBC, polarizing and non-polarizing beam splitter cubes; BD, beam dump; PM, phase modulator; PD, PD-I, PD-N, PD-S, photodiodes; FI, faraday isolator; ML, mode matching lens; BS, beam shifter; FS, fused silica window; L, CL, lenses; ES, unit for error signal detection; M1, M2, cavity mirrors; LBO, lithium triborate crystal; P, prism; PZT, piezoelectric transducer; ND, neutral density filter; C, chopper; A, aperture. Part (a) is used to normalize the absorption-spectroscopy signal, and part (b) is used for doppler-free saturation spectroscoy.

Fig. 2.
Fig. 2.

Green output power Pgr at 545.5 nm as a function of the infrared input power Pir at 1091 nm.

Fig. 3.
Fig. 3.

(a) Absorption spectrum of molecular iodine. (b) Doppler free spectrum of the line at 18334.8 cm-1

Metrics