Abstract

– The propagation loss in compact silicon microring resonators is optimized with varied ring widths as well as bending radii. At the telecom band of 1.53–1.57 μm, we demonstrate as low as 3-4 dB/cm propagation losses in compact silicon microring resonators with a small bending radius of 5 μm, corresponding to a high intrinsic quality factor of 200,000-300,000. The loss is reduced to 2-3 dB/cm for a larger bending radius of 10 μm, and the intrinsic quality factor increases up to an ultrahigh value of 420,000. Slot-waveguide microring resonators with around 80% optical power confinement in the slot are also demonstrated with propagation losses as low as 1.3±0.2 dB/mm at 1.55 μm band. These loss numbers are believed to be among the lowest ones ever achieved in silicon microring resonators with similar sizes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. K. Lee, D. R. Lim, and L. C. Kimerling, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  2. F. Xia, L. Sekaric, and Y. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
    [CrossRef]
  3. Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  4. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  5. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron 11, 232-239 (2005).
    [CrossRef]
  6. P. Dumon, G. Roelkens, W. Bogaerts, D. Van Thourhout, J. Wouters, S. Beckx, P. Jaenen, R. Baets, Basic Photonic Wire Components in Silicon-on-Insulator, Group IV Photonics, Belgium, p.189-191 (2005).
  7. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004).
    [CrossRef]
  8. M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, "Transparent Wavelength Switching of Resonant Filters," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDA2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CPDA2>
  9. T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, "High-Q optical resonators in silicon-on-insulator based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
    [CrossRef]
  10. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004).
    [CrossRef] [PubMed]
  11. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. -Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
    [CrossRef] [PubMed]
  12. C. A. Barrios, and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005).
    [CrossRef] [PubMed]
  13. S. Xiao, M. H. Khan, H. Shen, M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15, 10553-10561 (2007).
    [CrossRef] [PubMed]
  14. http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10553>
  15. C. W. Holzwarth, T. Barwicz and H. I. Smith, "Optimization of HSQ films for photonic applications," 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 2007.

2007

2005

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron 11, 232-239 (2005).
[CrossRef]

T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, "High-Q optical resonators in silicon-on-insulator based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. -Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
[CrossRef] [PubMed]

C. A. Barrios, and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005).
[CrossRef] [PubMed]

2004

2001

Appl. Phys. Lett.

T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, "High-Q optical resonators in silicon-on-insulator based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron 11, 232-239 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Nature Photon.

F. Xia, L. Sekaric, and Y. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

M. A. Popovic, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, "Transparent Wavelength Switching of Resonant Filters," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CPDA2. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CPDA2>

P. Dumon, G. Roelkens, W. Bogaerts, D. Van Thourhout, J. Wouters, S. Beckx, P. Jaenen, R. Baets, Basic Photonic Wire Components in Silicon-on-Insulator, Group IV Photonics, Belgium, p.189-191 (2005).

http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-17-10553>

C. W. Holzwarth, T. Barwicz and H. I. Smith, "Optimization of HSQ films for photonic applications," 51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig.1.
Fig.1.

Schematic of a symmetrically coupled microring resonator.

Fig. 2.
Fig. 2.

Scanning electron micrographs of a fabricated microring resonator and waveguide cross-section at two cleaved facets.

Fig. 3.
Fig. 3.

Measured responses of a microring resonator similar to the one shown in Fig. 2. (a) is a general view of the drop-port response, (b) is a zoom-in view of through-port and drop-port responses scanned with much finer wavelength steps than that in (a).

Fig. 4.
Fig. 4.

Extracted propagation losses (a) and extracted intrinsic quality factors (b) in microring resonators with different ring widths (Wring = 400, 450, 500, 550, and 600 nm) but the same core height of 250 nm. The bending radius is 5 μm.

Fig. 5.
Fig. 5.

(a) Scanning-electron micrographs of one fabricated weakly coupled microring resonator. (b) zoom-in view of through-port and drop-port responses scanned with 1 pm wavelength step.

Fig. 6.
Fig. 6.

Measured responses of the through-port and drop-port of a microring resonator with R=10 μm. (b) is a zoom-in view of (a).

Fig. 7.
Fig. 7.

Extracted propagation losses (a) and extracted intrinsic quality factors (b) in microring resonators with different ring widths (Wring = 400, 500, and 600 nm) but the same core height of 250 nm. The bending radius is 10 μm.

Fig. 8.
Fig. 8.

(a) Scanning-electron micrographs of one fabricated slot-waveguide microring resonator and the simulated slot-mode (amplitude) picture. (b) One measured add-drop response.

Metrics