Abstract

We have fabricated high efficiency white organic light-emitting diodes (WOLEDs) with red-dye doped hole injection layer (HIL) and blue emissive layer. We investigated the carrier transport and photoluminescence efficiency in the device of single-layer HIL with different red dye species, bis(4-diphneylamino-phenyl)-perylene-3-yl-amine,

4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9enyl)-4H-pyran and a dopant material of fused aromatic ring (P1) provided by Idemitsu Kosan in 4,4′,4″-tris[2-naphthyl(phenyl)amino]triphenylamine with a varied concentration. It was found that 25-% wt P1 in HIL has better electro-optical characteristics. Furthermore, we have fabricated three WOLEDs of chromatic-stability with different thickness of HIL layer. High chromatic-stability CCM-WOLEDs have been achieved, which can be applied for lightening and backlight for flat panel display.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. W. D’Andrade and S. R. Forrest, "White organic light-emitting devices for solid-state lighting," Adv. Mater. 9, 1585-1595 (2004).
    [CrossRef]
  2. Y. W. Ko, C. H. Chung, J. H. Lee, Y. H. Kim, C. Y. Sohn, B. C. Kim, C. S. Hwang, Y. H. Song, J. Lim, Y. J. Ahn, G. W. Kang, N. Lee, and C. Lee, "Efficient white organic light emission by single emitting layer," Thin Solid Films 426, 246-249 (2003).
    [CrossRef]
  3. J. Kido, M. Kimura, and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science 267, 1332-1334 (1995).
    [CrossRef] [PubMed]
  4. R. S. Deshpande, V. Bulović, and S. R. Forrest, "White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer," Appl. Phys. Lett. 75, 888-890 (1999).
    [CrossRef]
  5. G. T. Lei, L. D. Wang, and Y. Qiu, "Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer," Appl. Phys. Lett. 88, 103508-103510 (2006).
    [CrossRef]
  6. C.W. Ko and Y. T. Tao, "Bright white organic light-emitting diode," Appl. Phys. Lett. 79, 4234-4236 (2001).
    [CrossRef]
  7. Y. Sun, N. Giebink, H. Kanno, B. Wa, M. Thompson, and S. Forrest, "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature (London) 440, 908-912 (2006).
    [CrossRef]
  8. T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, "Multiphoton organic EL device having charge generation layer," SID Imp. Symp. Digest Tech. Papers (2003) pp. 979-981.
  9. F. F. Guo and D. G. Ma "White organic light-emitting diodes based on tandem structures," Appl. Phys. Lett. 87, 173510-173512 (2005).
    [CrossRef]
  10. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
    [CrossRef]
  11. B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, "Highly efficient white organic light-emitting diode," Appl. Phys. Lett. 88, 113506-113508 (2006).
    [CrossRef]
  12. C. Li, M. Ichikawa, B. Wei, Y. Taniguchi, H. Kimura, K. Kawaguchi, and K. Sakurai, "A highly color-stability white organic light-emitting diode by color conversion within hole injection layer," Opt. Express 15, 608-615 (2007).
    [CrossRef]
  13. C. Li, B. Wei, M. Ichikawa, Y. Taniguchi, H. Kimura, T. Saito, and K. Sakurai "Low-voltage driving three-peak white organic light emitting diodes with conversion hole injection layer based on host-guest energy transfer," Jpn. J. Appl. Phys. (to be published).
  14. T. Iwakuma, T. Aragane, Y. Hironaka, K. Fukuoka, H. Ikada, C. Hosokawa, and T. Kusomoto, "Red and white EL materials based on a new fused aromatic ring," SID J. 33, 598-601 (2002).
    [CrossRef]
  15. H. Bassler, G. Schonherr, M. Abkowitz, and D. M. Pai, "Hopping transport in prototypical organic glasses," Phys. Rev. B 26, 3105-3113 (1982).
    [CrossRef]
  16. B. Wei, M Ichikawa, K Furukawa, T Koyama, and Y Taniguchi, "High peak luminance of molecularly dye-doped organic light-emitting diodes under pulse voltages, " J. Appl. Phys. 98, 0445061-0445065 (2005).
    [CrossRef]

2007

2006

G. T. Lei, L. D. Wang, and Y. Qiu, "Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer," Appl. Phys. Lett. 88, 103508-103510 (2006).
[CrossRef]

Y. Sun, N. Giebink, H. Kanno, B. Wa, M. Thompson, and S. Forrest, "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature (London) 440, 908-912 (2006).
[CrossRef]

B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, "Highly efficient white organic light-emitting diode," Appl. Phys. Lett. 88, 113506-113508 (2006).
[CrossRef]

2005

F. F. Guo and D. G. Ma "White organic light-emitting diodes based on tandem structures," Appl. Phys. Lett. 87, 173510-173512 (2005).
[CrossRef]

B. Wei, M Ichikawa, K Furukawa, T Koyama, and Y Taniguchi, "High peak luminance of molecularly dye-doped organic light-emitting diodes under pulse voltages, " J. Appl. Phys. 98, 0445061-0445065 (2005).
[CrossRef]

2004

B. W. D’Andrade and S. R. Forrest, "White organic light-emitting devices for solid-state lighting," Adv. Mater. 9, 1585-1595 (2004).
[CrossRef]

2003

Y. W. Ko, C. H. Chung, J. H. Lee, Y. H. Kim, C. Y. Sohn, B. C. Kim, C. S. Hwang, Y. H. Song, J. Lim, Y. J. Ahn, G. W. Kang, N. Lee, and C. Lee, "Efficient white organic light emission by single emitting layer," Thin Solid Films 426, 246-249 (2003).
[CrossRef]

2002

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

T. Iwakuma, T. Aragane, Y. Hironaka, K. Fukuoka, H. Ikada, C. Hosokawa, and T. Kusomoto, "Red and white EL materials based on a new fused aromatic ring," SID J. 33, 598-601 (2002).
[CrossRef]

2001

C.W. Ko and Y. T. Tao, "Bright white organic light-emitting diode," Appl. Phys. Lett. 79, 4234-4236 (2001).
[CrossRef]

1999

R. S. Deshpande, V. Bulović, and S. R. Forrest, "White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer," Appl. Phys. Lett. 75, 888-890 (1999).
[CrossRef]

1995

J. Kido, M. Kimura, and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science 267, 1332-1334 (1995).
[CrossRef] [PubMed]

1982

H. Bassler, G. Schonherr, M. Abkowitz, and D. M. Pai, "Hopping transport in prototypical organic glasses," Phys. Rev. B 26, 3105-3113 (1982).
[CrossRef]

Adv. Mater.

B. W. D’Andrade and S. R. Forrest, "White organic light-emitting devices for solid-state lighting," Adv. Mater. 9, 1585-1595 (2004).
[CrossRef]

Appl. Phys. Lett.

R. S. Deshpande, V. Bulović, and S. R. Forrest, "White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer," Appl. Phys. Lett. 75, 888-890 (1999).
[CrossRef]

G. T. Lei, L. D. Wang, and Y. Qiu, "Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer," Appl. Phys. Lett. 88, 103508-103510 (2006).
[CrossRef]

C.W. Ko and Y. T. Tao, "Bright white organic light-emitting diode," Appl. Phys. Lett. 79, 4234-4236 (2001).
[CrossRef]

F. F. Guo and D. G. Ma "White organic light-emitting diodes based on tandem structures," Appl. Phys. Lett. 87, 173510-173512 (2005).
[CrossRef]

A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, "Organic light-emitting devices for illumination quality white light," Appl. Phys. Lett. 80, 3470-3472 (2002).
[CrossRef]

B. C. Krummacher, V. E. Choong, M. K. Mathai, S. A. Choulis, F. So, F. Jermann, T. Fiedler, and M. Zachau, "Highly efficient white organic light-emitting diode," Appl. Phys. Lett. 88, 113506-113508 (2006).
[CrossRef]

J. Appl. Phys.

B. Wei, M Ichikawa, K Furukawa, T Koyama, and Y Taniguchi, "High peak luminance of molecularly dye-doped organic light-emitting diodes under pulse voltages, " J. Appl. Phys. 98, 0445061-0445065 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

C. Li, B. Wei, M. Ichikawa, Y. Taniguchi, H. Kimura, T. Saito, and K. Sakurai "Low-voltage driving three-peak white organic light emitting diodes with conversion hole injection layer based on host-guest energy transfer," Jpn. J. Appl. Phys. (to be published).

Nature (London)

Y. Sun, N. Giebink, H. Kanno, B. Wa, M. Thompson, and S. Forrest, "Management of singlet and triplet excitons for efficient white organic light-emitting devices," Nature (London) 440, 908-912 (2006).
[CrossRef]

Opt. Express

Phys. Rev. B

H. Bassler, G. Schonherr, M. Abkowitz, and D. M. Pai, "Hopping transport in prototypical organic glasses," Phys. Rev. B 26, 3105-3113 (1982).
[CrossRef]

Science

J. Kido, M. Kimura, and K. Nagai, "Multilayer White Light-Emitting Organic Electroluminescent Device," Science 267, 1332-1334 (1995).
[CrossRef] [PubMed]

SID J.

T. Iwakuma, T. Aragane, Y. Hironaka, K. Fukuoka, H. Ikada, C. Hosokawa, and T. Kusomoto, "Red and white EL materials based on a new fused aromatic ring," SID J. 33, 598-601 (2002).
[CrossRef]

Thin Solid Films

Y. W. Ko, C. H. Chung, J. H. Lee, Y. H. Kim, C. Y. Sohn, B. C. Kim, C. S. Hwang, Y. H. Song, J. Lim, Y. J. Ahn, G. W. Kang, N. Lee, and C. Lee, "Efficient white organic light emission by single emitting layer," Thin Solid Films 426, 246-249 (2003).
[CrossRef]

Other

T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, "Multiphoton organic EL device having charge generation layer," SID Imp. Symp. Digest Tech. Papers (2003) pp. 979-981.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

WOLED structure and energy diagram with inside CCM layer.

Fig. 2.
Fig. 2.

Current density of three species of red fluorescent dyes doped 2-TNATA sandwich cells and 2-TNATA cell vs. applied voltage.

Fig. 3.
Fig. 3.

Surface emission spectra from pumping organic films pumped by blue light at 480 nm

Fig. 4.
Fig. 4.

Fluorescence quantum yield of red-dye doped 2-TNATA films of different dopant concentration.

Fig. 5.
Fig. 5.

Change of PL intensity of single CCM films of P1 doped 2-TNATA with exposure time

Fig. 6.
Fig. 6.

Temperature effect of single CCM films of P1 doped 2-TNATA.

Fig. 7.
Fig. 7.

Filed effect for CCM film. The inset is devices current density as function of voltage.

Fig. 8.
Fig. 8.

EL spectra for the film of HIL of 200nm, 300nm and 400nm. (a) P1 no-doped HIL of greenish blue EL emission. (b) P1 doped HIL of white EL emission.

Fig. 9.
Fig. 9.

Color CIE with current density of white EL emission of devices. oe-15-22-14422-i001 and oe-15-22-14422-i002 is 200nm thickness of P1 doped HIL, oe-15-22-14422-i003 and oe-15-22-14422-i004 is the 300nm thickness of P1 doped HIL; oe-15-22-14422-i005 and oe-15-22-14422-i006 is the 400nm thickness of P1 doped HIL

Metrics