Abstract

We report on the fabrication and optical properties of etched highly nonlinear As2S3 chalcogenide planar rib waveguides with lengths up to 22.5 cm and optical losses as low as 0.05 dB/cm at 1550 nm - the lowest ever reported. We demonstrate strong spectral broadening of 1.2 ps pulses, in good agreement with simulations, and find that the ratio of nonlinearity and dispersion linearizes the pulse chirp, reducing the spectral oscillations caused by self-phase modulation alone. When combined with a spectrally offset band-pass filter, this gives rise to a nonlinear transfer function suitable for all-optical regeneration of high data rate signals.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, "Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications," J. Appl. Phys. 96, 6931-6933 (2004).
    [CrossRef]
  2. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
    [CrossRef]
  3. S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
    [CrossRef]
  4. Y. L. Ruan, B. Luther-Davies, W. T. Li, A. Rode, V. Kolev, and S. Madden, "Large phase shifts in AS2S3 waveguides for all-optical processing devices," Opt. Lett. 30, 2605-2607 (2005).
    [CrossRef] [PubMed]
  5. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Laser-deposited As2S3 chalcogenide films for waveguide applications," Appl. Surf. Sci. 197, 481-485 (2002).
    [CrossRef]
  6. A. K. Mairaj, P. Hua, H. N. Rutt, and D. W. Hewak, "Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga : La : S) glass," J. Lightwave Technol. 20, 1578-1584 (2002).
    [CrossRef]
  7. N. Ponnampalam, P. Dwivedi, T. Allen, T. Clement, R. DeCorby, and Y Tsui, Conference on Laser Ablation COLA’05, Banf, Canada, 11-16 September 2005.
  8. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  9. N. Ho, J. M. Laniel, R. Vallee, and A. Villeneuve, "Photosensitivity of As2S3 chalcogenide thin films at 1.5 µm," Opt. Lett. 28, 965-967 (2003).
    [CrossRef] [PubMed]
  10. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
    [CrossRef]
  11. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communication (ECOC)(Madrid, Spain, 1998), pp. 475-476.
  12. W. T. Li, Y. L. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, "Dry-etch of As2S3 thin films for optical waveguide fabrication," J. Vac. Sci. Technol. A 23, 1626-1632 (2005).
    [CrossRef]
  13. D. G. Georgiev, P. Boolchand, and K. A. Jackson, "Intrinsic nanoscale phase separation of bulk As2S3 glass," Philosophical Magazine 83, 2941-2953 (2003).
    [CrossRef]
  14. H. Takeuchi and K. Oe, "Low-Loss Single-Mode Gaas Algaas Miniature Optical Wave-Guides with Straight and Bending Structures," J. Lightwave Technol. 7, 1044-1054 (1989).
    [CrossRef]
  15. see e.g. D. L. Wood and J. Tauc, "Weak Absorption Tails in Amorphous Semiconductors," Phys. Rev. B 5, 3144-(1972).
    [CrossRef]
  16. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films", J. Opt. Soc. Am. B,  20, 1844-1852 (2003).
    [CrossRef]
  17. M. Lamont, C. M. de Sterke, and B. Eggleton, "Dispersion engineering of highly nonlinear As2S3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007).
    [CrossRef] [PubMed]
  18. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  20. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
    [CrossRef] [PubMed]

2007

2005

L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005).
[CrossRef] [PubMed]

Y. L. Ruan, B. Luther-Davies, W. T. Li, A. Rode, V. Kolev, and S. Madden, "Large phase shifts in AS2S3 waveguides for all-optical processing devices," Opt. Lett. 30, 2605-2607 (2005).
[CrossRef] [PubMed]

V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005).
[CrossRef]

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

W. T. Li, Y. L. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, "Dry-etch of As2S3 thin films for optical waveguide fabrication," J. Vac. Sci. Technol. A 23, 1626-1632 (2005).
[CrossRef]

2004

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, "Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications," J. Appl. Phys. 96, 6931-6933 (2004).
[CrossRef]

Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
[CrossRef] [PubMed]

2003

2002

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Laser-deposited As2S3 chalcogenide films for waveguide applications," Appl. Surf. Sci. 197, 481-485 (2002).
[CrossRef]

A. K. Mairaj, P. Hua, H. N. Rutt, and D. W. Hewak, "Fabrication and characterization of continuous wave direct UV (λ=244 nm) written channel waveguides in chalcogenide (Ga : La : S) glass," J. Lightwave Technol. 20, 1578-1584 (2002).
[CrossRef]

2000

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

1989

H. Takeuchi and K. Oe, "Low-Loss Single-Mode Gaas Algaas Miniature Optical Wave-Guides with Straight and Bending Structures," J. Lightwave Technol. 7, 1044-1054 (1989).
[CrossRef]

Appl. Phys. Lett.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model," Appl. Phys. Lett. 77, 1617-1619 (2000).
[CrossRef]

Appl. Surf. Sci.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Laser-deposited As2S3 chalcogenide films for waveguide applications," Appl. Surf. Sci. 197, 481-485 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005).
[CrossRef]

S. Ramachandran and S. G. Bishop, "Photoinduced integrated-optic devices in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005).
[CrossRef]

J. Appl. Phys.

J. T. Gopinath, M. Soljacic, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, "Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications," J. Appl. Phys. 96, 6931-6933 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. A

W. T. Li, Y. L. Ruan, B. Luther-Davies, A. Rode, and R. Boswell, "Dry-etch of As2S3 thin films for optical waveguide fabrication," J. Vac. Sci. Technol. A 23, 1626-1632 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Philosophical Magazine

D. G. Georgiev, P. Boolchand, and K. A. Jackson, "Intrinsic nanoscale phase separation of bulk As2S3 glass," Philosophical Magazine 83, 2941-2953 (2003).
[CrossRef]

Other

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communication (ECOC)(Madrid, Spain, 1998), pp. 475-476.

N. Ponnampalam, P. Dwivedi, T. Allen, T. Clement, R. DeCorby, and Y Tsui, Conference on Laser Ablation COLA’05, Banf, Canada, 11-16 September 2005.

see e.g. D. L. Wood and J. Tauc, "Weak Absorption Tails in Amorphous Semiconductors," Phys. Rev. B 5, 3144-(1972).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

“Snake” pattern layout schematic, inner bend radius was 2.5mm, outer radius was 3.2mm

Fig 2.
Fig 2.

AFM scans of a) as deposited film surface, (b) surface after optimized CF4 + O2 etch, (c) optimized CHF3 etch. Scan size is 1×1μm, vertical scale is 10 nm/div. RMS roughnesses are (a) 0.3 nm, (b) 3.3 nm, (c) 1.5 nm.

Fig. 3.
Fig. 3.

Optical micrograph of cleaved finished waveguide in the 2.6 μm thick As2S3 film

Fig. 4.
Fig. 4.

Measured insertion loss for 2.5×4 μm and 0.9×4 μm waveguides. Data for the 1310 nm measurement and the 0.9 μm thick film have been offset for clarity.

Fig. 5.
Fig. 5.

Computed quasi-TE mode field of fabricated waveguides

Fig. 6
Fig. 6

Experimental setup for demonstration of spectral broadening. F8: figure eight fiber laser; VOA: variable optical attenuator; OSA: Optical spectrum analyzer.

Fig. 7.
Fig. 7.

(a) Spectral broadening of 1.2 ps pulses with peak power specified inside waveguide (experiment:solid and simulation:dashed). (b) Resulting regenerator power transfer function for a 2.8 nm spectrally offset Gaussian filter immediately after the waveguide. Inset shows filter spectrum and simulated broadening with and without dispersion at 23.7 W peak power.

Metrics