Abstract

We present results of pulsed, narrowband amplification at 1540.6nm using a polarization maintaining, large mode area gain fiber co-doped with erbium and ytterbium. At a repetition rate of 55 kHz, 2.9 W of average 1540.6nm power were generated with a pulse duration of 136 ns, corresponding to an SBS free peak power of 360 W. The amplified signal was frequency doubled in peridically poled potassium titanyl phosphate and conversion efficiencies of up to 56% were generated. When varying the repetition rate between 55-150 kHz the conversion efficiency changed from 56% to 35% due to the limited pump power.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. A. Krainak, H. Abdeldayem, J. Abshire, G. R. Allan, J. Burris, J. Chen, D. B. Coyle, S. Li, H. Riris, A. Seas, M. A. Stephen, E. Wilson, and A. Yu, "Fiber lasers and amplifiers for Earth/planetary science and exploration at NASA Goddard Space Flight Center," Earth-Sun Science Technology Conference, June 2006.
  2. J. B. Abshire, H. Riris, G. R. Allan, X. Sun, J. Chen, S. R. Kawa, J. P. Mao, M. A. Stephen, J. F. Burris, M. A. Krainak, "Laser Sounder for Global Measurement of the CO2 Concentrations in the Troposphere from Space", 14th Coherent Laser Radar Conference, July 2007, Snowmass, CO
  3. M. A. Stephen, M. A. Krainak, G. R. Allan, H. Riris, "Narrow-band, Tunable, Frequency-doubled, Erbium-doped Fiber-amplified Transmitter," Opt. Lett. 32, 2073-2075 (2007).
    [CrossRef] [PubMed]
  4. G. P. Agrawal, Nonlinear Fiber Optics, Third Edition, (Academic, 2001)
  5. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000).
    [CrossRef]
  6. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006).
    [CrossRef] [PubMed]
  7. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS Threshold in a Short Highly Nonlinear Fiber by Applying a Temperature Distribution," J. Lightwave Technol. 19,1691 (2001).
    [CrossRef]
  8. V. I. Kovalev and R. G. Harrison, "Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers," Opt. Lett. 31, 161-163 (2006).
    [CrossRef] [PubMed]
  9. N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11,1518-1522 (1993).Q1
    [CrossRef]
  10. J. D. Marconi, J. M. Chavez Boggio, F. A. Callegari, A. Guimaraes, R. Arradi and H. L. Fragnito, "Double-pumped parametric amplifier with strained fibre to suppress SBS," Electron. Lett. 40, (2004)Q2
    [CrossRef]
  11. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, "Design concept for optical fibers with enhanced SBS threshold," Opt. Express 13, 5338-5346 (2005).
    [CrossRef] [PubMed]
  12. P. D. Dragic C. Liu, G. C. Papen, and A. Galvanauskas, "Optical Fiber with an acoustic guiding layer for stimulated Brillouin Scattering Suppression," Conference on Lasers and Electro-Optics (2005).
  13. Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, Opt. Lett. Vol.  30, 2997-2999 (2005).
    [CrossRef]

2007 (1)

2006 (2)

2005 (2)

2004 (1)

J. D. Marconi, J. M. Chavez Boggio, F. A. Callegari, A. Guimaraes, R. Arradi and H. L. Fragnito, "Double-pumped parametric amplifier with strained fibre to suppress SBS," Electron. Lett. 40, (2004)Q2
[CrossRef]

2001 (1)

2000 (1)

1993 (1)

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11,1518-1522 (1993).Q1
[CrossRef]

Electron. Lett. (1)

J. D. Marconi, J. M. Chavez Boggio, F. A. Callegari, A. Guimaraes, R. Arradi and H. L. Fragnito, "Double-pumped parametric amplifier with strained fibre to suppress SBS," Electron. Lett. 40, (2004)Q2
[CrossRef]

IEEE J. Lightwave Technol. (1)

N. Yoshizawa and T. Imai, "Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling," IEEE J. Lightwave Technol. 11,1518-1522 (1993).Q1
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (4)

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics, Third Edition, (Academic, 2001)

M. A. Krainak, H. Abdeldayem, J. Abshire, G. R. Allan, J. Burris, J. Chen, D. B. Coyle, S. Li, H. Riris, A. Seas, M. A. Stephen, E. Wilson, and A. Yu, "Fiber lasers and amplifiers for Earth/planetary science and exploration at NASA Goddard Space Flight Center," Earth-Sun Science Technology Conference, June 2006.

J. B. Abshire, H. Riris, G. R. Allan, X. Sun, J. Chen, S. R. Kawa, J. P. Mao, M. A. Stephen, J. F. Burris, M. A. Krainak, "Laser Sounder for Global Measurement of the CO2 Concentrations in the Troposphere from Space", 14th Coherent Laser Radar Conference, July 2007, Snowmass, CO

P. D. Dragic C. Liu, G. C. Papen, and A. Galvanauskas, "Optical Fiber with an acoustic guiding layer for stimulated Brillouin Scattering Suppression," Conference on Lasers and Electro-Optics (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup of polarization maintaining free space power amplifier used for narrowband amplification experiments. DFBL - distributed feedback laser, AOM - accousto optic modulator, EDFA – erbium doped fiber amplifier, PPKTP - peridically polled potassium titanyl phosphate, EYDF- erbium ytterbium doped fiber.

Fig. 2.
Fig. 2.

Spectrum after second AOM (AOM2) recorded with a resolution of 0.01 nm. The signal bandwidth is smaller than the instrumental resolution as the pulses are transform limited, i.e. approximately 3.5 MHz (0.027 pm). Additionally, a temporal pulseshape of the externally modulated DFBL (after AOM1), and a temporal pulseshape after the second AOM (AOM2) are shown in the insert.

Fig. 3.
Fig. 3.

1.54 μm output spectrum at 55 kHz recorded with a 0.01 nm resolution and AOM2 included in setup. Left insert: detailed lineshape of 2.9 W, 55 kHz spectrum with AOM2 in setup. Right insert: Spectrum without AOM2 at 2.9 W and 150 kHz.

Fig. 4.
Fig. 4.

1.54 μm output power at 55 kHz as a function of applied pump power. Additionally, a temporal trace (upper left) with the maximum SBS free peak power and a (long persistence) oscilloscope trace (lower right) showing the onset of SBS are displayed in two separate inserts. The time base of the oscilloscope display was set to 40 ns/div.

Fig. 5.
Fig. 5.

Power conversion efficiency to 770.3 nm as a function of applied 1540.6 nm power. The insert shows a temporal trace of a 770.3 nm pulse at the highest conversion efficiency of 56%.

Fig. 6.
Fig. 6.

Conversion efficiency as a function of repetition rate between 67 -150 kHz for fixed pump power of 29 W. Note: The pump power was limited to 29 W. The average power at 1540.6 nm is shown in the plot for the corresponding repetition rate. The insert shows an OSA spectrum recorded at 0.05nm resolution. Only minor ASE emission at 1525 nm is noticeable.

Metrics