Abstract

The fabrication of a Cr-doped fiber using a drawing-tower method with Cr:YAG as the core of the preform is presented. The Cr-doped YAG preform was fabricated by a rod-in-tube method. By employing a negative pressure control in drawing-tower technique on the YAG preform, the Cr-doped fibers with a better core circularity and uniformity, and good interface between core and cladding were fabricated. The amplified spontaneous emission spectrum showed a broadband emission of 1.2 to 1.6 μm with the output power density about a few nW/nm. The results indicate that this new Cr-doped fiber may be used as a broadband fiber amplifier to cover the bandwidths in the whole 1.3-1.6 μm range of low-loss and low-dispersion windows of silica fibers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Kasamatsy, Y. Yano, and H. Seller, "1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-μm dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999).
    [CrossRef]
  2. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G.H. Sige, Jr., "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Opt. Lett. 16, 1747-1749 (1991).
    [CrossRef] [PubMed]
  3. S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
    [CrossRef]
  4. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
    [CrossRef]
  5. M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
    [CrossRef]
  6. T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
    [CrossRef]
  7. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
    [CrossRef] [PubMed]
  8. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, "Glass-clad Cr4+ YAG crystal fiber for the generation of superwideband amplified spontaneous emission," Opt. Lett. 29, 439-441 (2004).
    [CrossRef] [PubMed]
  9. J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
    [CrossRef]
  10. Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T. Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, "Fabrication of Cr-doped Fibers by Drawing Tower," OFC, Anaheim, CA (2006), paper OWI21.
  11. Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, Broadband emission from Cr-doped fibers fabricated by drawing tower," Opt. Exp. 14,8492-8497 (2006).
    [CrossRef]
  12. E. Snitzer and R. Tummineli, "SiO2-clad fibers with selectively volatilized soft-glass cores," Opt. Lett. 14, 757-759 (1989).
    [CrossRef] [PubMed]
  13. Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).
  14. K. Lyytikainen, J. Canning, J. Digweed and J. Zagari, "Geometry controlof air-silica structured optical fibres using pressurisation," in Proceedings of SBO/IEEE MTT-S IMOC 2 (2003), pp. 1001-1005.
  15. Cz. Koepke, K. Wisniewski, and M. Crinberg, "Excited state spectroscopy of chromium ions in various valence states in glasses," J. Alloy Compounds 341, 19-27 (2002).
    [CrossRef]
  16. J.P. Hehir, M.O. Henry, J.P. Larkin and G.F. Imbusch, "Nature of the luminescence from YAG:Cr3+, " J. Phys. C: Solid State Phys. 7, 2241-2248 (1974).
    [CrossRef]

2006 (1)

Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, Broadband emission from Cr-doped fibers fabricated by drawing tower," Opt. Exp. 14,8492-8497 (2006).
[CrossRef]

2005 (2)

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

2002 (1)

Cz. Koepke, K. Wisniewski, and M. Crinberg, "Excited state spectroscopy of chromium ions in various valence states in glasses," J. Alloy Compounds 341, 19-27 (2002).
[CrossRef]

2000 (1)

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

1999 (1)

1991 (1)

1989 (1)

1980 (1)

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

1974 (1)

J.P. Hehir, M.O. Henry, J.P. Larkin and G.F. Imbusch, "Nature of the luminescence from YAG:Cr3+, " J. Phys. C: Solid State Phys. 7, 2241-2248 (1974).
[CrossRef]

Appl. Phys. Lett. (4)

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

J. Alloy Compounds (1)

Cz. Koepke, K. Wisniewski, and M. Crinberg, "Excited state spectroscopy of chromium ions in various valence states in glasses," J. Alloy Compounds 341, 19-27 (2002).
[CrossRef]

J. Cryst. Growth (1)

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

J. Phys. C: Solid State Phys. (1)

J.P. Hehir, M.O. Henry, J.P. Larkin and G.F. Imbusch, "Nature of the luminescence from YAG:Cr3+, " J. Phys. C: Solid State Phys. 7, 2241-2248 (1974).
[CrossRef]

Opt. Exp. (1)

Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, Broadband emission from Cr-doped fibers fabricated by drawing tower," Opt. Exp. 14,8492-8497 (2006).
[CrossRef]

Opt. Lett. (5)

Other (3)

Y.C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, H.M. Yang, M.T. Sheen, S.L. Huang, T.Y. Chang, and W.H. Cheng, "Fabrication of Cr-doped Fibers by Drawing Tower," OFC, Anaheim, CA (2006), paper OWI21.

Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).

K. Lyytikainen, J. Canning, J. Digweed and J. Zagari, "Geometry controlof air-silica structured optical fibres using pressurisation," in Proceedings of SBO/IEEE MTT-S IMOC 2 (2003), pp. 1001-1005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cr4+-doped YAG preform.

Fig. 2.
Fig. 2.

Drawing tower set-up.

Fig. 3.
Fig. 3.

Negative pressure control.

Fig. 4.
Fig. 4.

Photographs of the polished end (a) with, and (b) without negative pressure control.

Fig. 5.
Fig. 5.

The laser scanning confocal microscope for index and fluorescence mappings.

Fig. 6.
Fig. 6.

The refractive index profiles of the Cr-doped fibers.

Fig. 7.
Fig. 7.

The X-ray diffraction pattern of (a) a Cr-doped fiber, and (b) Cr:YAG crystal.

Fig. 8.
Fig. 8.

(a). The reflected fluorescence spectrum, and (b) the ASE spectrum of the Cr-doped fiber.

Tables (1)

Tables Icon

Table I. The material properties of Cr4+:YAG and SiO2.

Metrics