Abstract

We propose a novel broad-angle polarization beam splitter utilizing the spatial dispersion of a special multi-layered dielectric periodic structure. The equal-frequency contours of this structure are flat lines for TE polarization but curved lines for TM polarization at a designed frequency. This special multi-layered structure has a fixed optical thickness for TE polarization for all incident angles. A polarization beam splitter working over a broad range of angle (from 0° to 70°) is achieved by stacking two such multi-layered structures of finite length (in the normal direction) with a half-period shift in the transverse direction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. lett. 58, 2059 - 2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. lett. 58,2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28, 2384-2386 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-23-2384.
    [CrossRef] [PubMed]
  4. D. R. Solli and J. M. Hickmann, "Photonic crystal based polarization control devices," J. Phys. D: Appl. Phys. 37, R263-R268 (2004).
    [CrossRef]
  5. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, "Polarization beam splitter based on a photonic crystal heterostructure," Opt. Lett. 31, 3104-3106 (2006) http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-21-3104
    [CrossRef] [PubMed]
  6. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, "Self-collimating photonic crystal polarization beam splitter," Opt. Lett. 32, 530-532 (2007) http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-5-530
    [CrossRef] [PubMed]
  7. L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29, 1620-1622 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-14-1620.
    [CrossRef] [PubMed]
  8. X. Ao, and S. He, "Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction," Opt. Lett. 30, 2152-2154 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-16-2152
    [CrossRef] [PubMed]
  9. X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214(1999)
    [CrossRef]
  11. J. Witzens, M. Loncar, and A. Scherer, "Self-Collimation in Planar Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
    [CrossRef]
  12. X. Yu, and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 833251-3253(2003)
    [CrossRef]
  13. E. Silvestre, P. S. J. Russell, T. A. Birks, and J. C. Knight, "Analysis and design of an endlessly single-mode finned dielectric waveguide," J. Opt. Soc. Am. A 15, 3067-3075 (1998) http://www.opticsinfobase.org/abstract.cfm?URI=josaa-15-12-3067
    [CrossRef]

2007 (1)

2006 (2)

2005 (1)

2004 (2)

2003 (2)

2002 (1)

J. Witzens, M. Loncar, and A. Scherer, "Self-Collimation in Planar Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214(1999)
[CrossRef]

1998 (1)

1987 (2)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. lett. 58, 2059 - 2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. lett. 58,2486-2489 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

X. Ao, L. Liu, L. Wosinski, and S. He, "Polarization beam splitter based on a two-dimensional photonic crystal of pillar type," Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214(1999)
[CrossRef]

X. Yu, and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 833251-3253(2003)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, "Self-Collimation in Planar Photonic Crystals," IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

D. R. Solli and J. M. Hickmann, "Photonic crystal based polarization control devices," J. Phys. D: Appl. Phys. 37, R263-R268 (2004).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. lett. (2)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. lett. 58, 2059 - 2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. lett. 58,2486-2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a). The multi-layered structure with alternative high and low refractive index strips of finite length d. (b) The novel polarization beam splitter formed by stacking together two such multi-layered structures with a half-period shift in x direction.

Fig. 2.
Fig. 2.

The EFCs of the first band for the multi-layered structure [shown in Fig. 1(a)] (a) for TE polarization; (b) for TM polarization; and (c) at normalized frequency ωa/2πc=0.42 for both polarizations.

Fig. 3.
Fig. 3.

Schematic illustration for TE waves impinging on the multi-layered structure at different incident angles.

Fig. 4.
Fig. 4.

(a). Snapshot distribution of Ey at a certain simulation time for the case of incident angle θ=0°, and (b) is the time averaged result of ∣Ey ∣ corresponding to (a); (c) and (d) show the time averaged distribution of ∣Ey ∣ when θ=20°and θ=45°, respectively.

Fig. 5.
Fig. 5.

A schematic illustration for an incident beam impinging on two meta-structures stacked together with a half-period shift. Left: a beam of TE polarization is highly reflected. Right: a beam of TM polarization is highly transmitted.

Fig. 6.
Fig. 6.

The reflectivity (for TE polarization) and transmissivity (for TM polarization) for the present PBS as the incident angle increases from 0° to 70°. For comparison, the reflectivity (for TE polarization) and transmissivity (for TM polarization) for a single meta-structure are shown in the same figure.

Fig. 7.
Fig. 7.

(a). The time averaged distributions of ∣Ey ∣ when a TE Gaussian beam impinges on the present PBS with θ=45°; (b) The time averaged distributions of ∣Hy ∣ when a TM Gaussian beam impinges on the present PBS with θ=45°.

Metrics