Abstract

We recorded and observed, for the first time, three-dimensional image of femtosecond light pulse propagation as continuous moving picture using light-in-flight recording by holography. We present the moving pictures of collimated and converging light pulses and some images extracted from them. We also discussed inherent feature appearing in the images. Such a discussion is essential to determine the actual shape of the propagating light pulse. This technique provides the means for observation of a temporally and spatially continuous moving picture of light itself and also enables the analysis of various kinds of ultrafast phenomena.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. See, for example, International Conference on Ultrafast Phenomena (UP) 2006, Technical Digest (CD) (Optical Society of America, 2006).
  2. M. Fujimoto, S. Aoshima, M. Hosoda, and Y. Tsuchiya, "Femtosecond time-resolvedoptical polarigraphy:imaging of the propagation dynamics of intenselight in a medium" Opt. Lett. 24, 850-852 (1999).
    [CrossRef]
  3. M. Fujimoto, A. Aoshima, M. Hosoda and Y. Tsuchiya, "Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy," Phys. Rev. A 64, 033813 (2001).
    [CrossRef]
  4. M. Fujimoto, S. Aoshima, and Y. Tsuchiya, "Multiframe observation of an intense femtosecond optical pulse propagating in air" Opt. Lett. 27, 309-311 (2002).
    [CrossRef]
  5. M. Hosoda, A. Aoshima, M. Fujimoto and Y. Tsuchiya, "Femtosecond snapshot imaging of propagating light itself," Appl. Opt. 41, 2308-2317 (2002).
    [CrossRef] [PubMed]
  6. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001).
    [CrossRef] [PubMed]
  7. H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E 68, 026604 (2003).
    [CrossRef]
  8. H. Gersen, T. J. Karle, R. J. P. Engelen,W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  9. R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. K. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nat. Phys. 3, 401-405 (2007).
    [CrossRef]
  10. D. I. Staselko,Yu. N. Denisyuk and A. G. Smirnov, "Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source," Opt. Spectrosc. 26, 413-420 (1969).
  11. N. Abramson, "Light-in-flight recording by holography," Opt. Lett. 3, 121-123 (1978).
    [CrossRef] [PubMed]
  12. N. H. Abramson, "Light-in-flight recording: High-speed holographic motion pictures of ultrafast phenomena," Appl. Opt. 22, 215-232 (1983).
    [CrossRef] [PubMed]
  13. N. Abramson, "Time reconstructions in light-in-flight recording by holography," Appl. Opt. 30, 1242-1252 (1991).
    [CrossRef] [PubMed]
  14. B. Nilsson and T. E. Carlson, "Simultaneous measurement of shape and deformation using digital light-in-flight recording by holography," Opt. Eng. 39, 244-253 (2000).
    [CrossRef]
  15. T. Kubota and Y. Awatsuji, "Observation of light propagation by holography with a picosecond pulsed laser," Opt. Lett. 27, 815-817 (2002).
    [CrossRef]
  16. T. Kubota and Y. Awatsuji, "Femtosecond motion picture," IEICE Electron. Express 2, 298-304 (2005).
    [CrossRef]
  17. M. Yamagiwa, A. Komatsu, T. Kubota and Y. Awatsuji, "Observation of propagating femtosecond light pulse train generated by an integrated array illuminator as a spatially and temporally continuous motion picture," Opt. Express 13, 3296-3302 (2005).
    [CrossRef] [PubMed]
  18. A. Komatsu, T. Kubota and Y. Awatsuji, "Dependence of reconstructed image characteristics on the observation condition in light-in-flight recording by holography," J. Opt. Soc. Am. A 22,1678-1682 (2005).
    [CrossRef]

2007 (1)

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. K. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nat. Phys. 3, 401-405 (2007).
[CrossRef]

2005 (4)

2003 (1)

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E 68, 026604 (2003).
[CrossRef]

2002 (3)

2001 (2)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

M. Fujimoto, A. Aoshima, M. Hosoda and Y. Tsuchiya, "Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy," Phys. Rev. A 64, 033813 (2001).
[CrossRef]

2000 (1)

B. Nilsson and T. E. Carlson, "Simultaneous measurement of shape and deformation using digital light-in-flight recording by holography," Opt. Eng. 39, 244-253 (2000).
[CrossRef]

1999 (1)

1991 (1)

1983 (1)

1978 (1)

1969 (1)

D. I. Staselko,Yu. N. Denisyuk and A. G. Smirnov, "Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source," Opt. Spectrosc. 26, 413-420 (1969).

Appl. Opt. (3)

IEICE Electron. Express (1)

T. Kubota and Y. Awatsuji, "Femtosecond motion picture," IEICE Electron. Express 2, 298-304 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Phys. (1)

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. K. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nat. Phys. 3, 401-405 (2007).
[CrossRef]

Opt. Eng. (1)

B. Nilsson and T. E. Carlson, "Simultaneous measurement of shape and deformation using digital light-in-flight recording by holography," Opt. Eng. 39, 244-253 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Opt. Spectrosc. (1)

D. I. Staselko,Yu. N. Denisyuk and A. G. Smirnov, "Holographic registration of a picture of temporal coherence of a wave train of a pulse radiation source," Opt. Spectrosc. 26, 413-420 (1969).

Phys. Rev. A (1)

M. Fujimoto, A. Aoshima, M. Hosoda and Y. Tsuchiya, "Analysis of instantaneous profiles of intense femtosecond optical pulses propagating in helium gas measured by using femtosecond time-resolved optical polarigraphy," Phys. Rev. A 64, 033813 (2001).
[CrossRef]

Phys. Rev. E (1)

H. Gersen, J. P. Korterik, N. F. van Hulst, and L. Kuipers, "Tracking ultrashort pulses through dispersive media: Experiment and theory," Phys. Rev. E 68, 026604 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

H. Gersen, T. J. Karle, R. J. P. Engelen,W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Science (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking femtosecond laser pulses in space and time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Other (1)

See, for example, International Conference on Ultrafast Phenomena (UP) 2006, Technical Digest (CD) (Optical Society of America, 2006).

Supplementary Material (2)

» Media 1: MPG (1332 KB)     
» Media 2: MPG (286 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental arrangement of the hologram for recording three-dimensional image of ultrashort light pulse propagation based on light-in-flight recording by holography. (a) Recording arrangement. (b) The Japanese character for “light” on a mask serving as the object. The character was correctly read from the side of the beam splitter.

Fig. 2.
Fig. 2.

(1.3MB) Moving picture of the observed three-dimensional image of the collimated femtosecond light pulse propagating in the space filled with gelatin. The comb-tooth shape in the picture shows the reconstructed image of a measuring scale attached to the glass container to recognize the propagation of light pulse easily. The interval of the scale is 1 cm. The actual time of the phenomenon was 236 ps. This was derived from the required time for the reference pulse to propagate across the 10-cm-long hologram. [Media 1]

Fig. 3.
Fig. 3.

Four scenes extracted from the continuous moving picture of Fig. 2. (a) The image of the character “light”, which shows the femtosecond light pulse front, began to appear. (b)-(d) The femtosecond light pulse front was propagating from right to left. The observed image reversed right-to-left. The time interval between each picture was 14 ps.

Fig. 4.
Fig. 4.

Numerical result of the observed reconstructed image using the parameters meeting the experimental arrangement. The reconstructed image was composed of a set of scattered light beams whose departing time was different. The time at points C and D in the image were 192 ps before A and B.

Fig. 5.
Fig. 5.

(286KB) Moving picture of the observed three-dimensional image of femtosecond light pulse converging and diverging in the space filled with gelatin through a lens. The actual time of the phenomenon was 259 ps. The reconstructed image from the hologram recorded with a continuous laser beam was overlaid in the picture to identify the propagation path. [Media 2]

Fig. 6.
Fig. 6.

Eight scenes extracted from continuous moving picture of Fig. 5. (a)-(e) Converging femtosecond light pulse front. (f) Just-focused light pulse. (g)-(h) Diverging femtosecond light pulse front. The time interval between adjacent scenes was 15 ps. The reconstructed image from the hologram recorded with a continuous laser beam was overlaid on the picture to identify the propagation path. It was recognized from the inversion of the character that the pulse surface was inverted before or after the focus.

Metrics