Abstract

This paper carries out a rigorous analysis of supercontinuum generation in an improved highly asymmetric microstructured fiber (MF) design. This geometry, defined simply as D-MF, has the advantage of being produced with a regular stacking and drawing technology. We have obtained birefringence values on the order of 4.87×10-3 at the adopted pump wavelength and a significantly smaller effective area when compared to a whole MF, which makes this fiber quite attractive for SCG. Therefore, this D-MF design is a promising alternative for SCG since it provides new degrees of freedom to control field confinement, birefringence, and dispersion characteristics of MFs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. D. Mogilevtsev, T. A. Birks, and P. St. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal Fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  5. J. M.  Dudley, G.  Genty, and S.  Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys.  78, 1135-1184 (2006).
    [CrossRef]
  6. A. V. Husakou and J. Herrmann "Supercontinuum generation of higher-order solitons by fission in photonic crystal Fibers," Phys. Rev. Lett. 87, 203-901 (2001).
    [CrossRef]
  7. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  8. G. Genty, M. Lehtonen, and H. Ludvigsen, J. Broeng, M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1096 (2002).
    [PubMed]
  9. G. Genty, M. Lehtonen, and H. Ludvigsen, M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
    [CrossRef] [PubMed]
  10. N. Akhemediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef]
  11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
    [CrossRef] [PubMed]
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  13. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
    [CrossRef] [PubMed]
  14. F. Lu, Q. Lin, W. H. Knox and G. P. Agrawal, "Vector soliton fission," Phys. Rev. Lett. 93, 183901 (2004).
    [CrossRef] [PubMed]
  15. F. Luan, A. Yulin, J. C. Knight, and D. V. Skryabin, "Polarization instability of solitons in photonic crystal fibers," Opt. Express 14, 6550-6556 (2006).
    [CrossRef] [PubMed]
  16. Z. Zhu and T. G. Brown, "Polarization properties in supercontinuum spectra generated in birefringent photonic crystal fibers," J. Opt. Soc. Am. B 21, 249-257 (2004).
    [CrossRef]
  17. F. Biancalana and D. V. Skryabin, "Vector modulational instabilities in ultra-small core optical fibres," J. Opt. A 6, 301-306 (2004).
    [CrossRef]
  18. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Cross-phase modulation instability in photonic crystal fibers," Opt. Lett. 31, 873-875 (2006).
    [CrossRef] [PubMed]
  19. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006).
    [CrossRef] [PubMed]
  20. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
    [CrossRef]
  21. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  22. M. J. Steel and R. M. Osgood, Jr., "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
    [CrossRef]
  23. J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
    [CrossRef]
  24. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003).
    [CrossRef]
  25. A. Proulx, J. Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003).
    [CrossRef] [PubMed]
  26. N.-K. Chen and S. Chi, "Evanescent wave photonic crystal fiber tunable filter using dispersive optical polymers," Optical Fiber Communication Conference. Technical Digest. OFC/NFOEC 3, 3pp. (2005).
    [CrossRef]
  27. N.-K. Chen and S. Chi "Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers," Opt. Lett. 31, 2251-2253 (2006).
    [CrossRef] [PubMed]
  28. H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett. 29, 1194-1196 (2004).
    [CrossRef] [PubMed]
  29. J. Lægsgaard and A. Bjarklev, "Microstructured optical fibers-fundamentals and applications," J. Am. Ceram. Soc. 89, 2-12 (2006).
    [CrossRef]
  30. J. Fini and R. Bise. "Progress in fabrication and modeling of microstructured optical fiber," Jap. J. App. Phys. 43, 5717-5730 (2004).
    [CrossRef]
  31. K. Digweed-Lyytikainen, C. A. de Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero, "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microw. Opt. Technol. Lett. 49, 872-874, (2007).
    [CrossRef]
  32. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001)
  33. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  34. S. Trillo and S. Wabnitz, "Parametric and Raman amplification in birefringent fibers," J. Opt. Soc. Am. B 9, 1061-1082 (1992).
    [CrossRef]
  35. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005)
    [CrossRef]
  36. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  37. C. R. Menyuk, M. N. Islam and J. P. Gordon, "Raman effect in birefringent optical fibers," Opt. Lett. 16, 566-568 (1991).
    [CrossRef] [PubMed]
  38. D. H. Spadoti, C. A. de Francisco, V. E. Nascimento, B.-H. V. Borges, and M. A. Romero, "Full-vectorial to scalar FD-SOR formulations for optical waveguide modeling: A comparative study," Int. J. Numer. Model. 19, 507-520 (2006).
    [CrossRef]
  39. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  40. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
    [CrossRef] [PubMed]
  41. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13,6181-6192 (2005).
    [CrossRef] [PubMed]
  42. A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov and A. M. Zheltikov, "Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy," Opt. Express 14, 10645-10651 (2006).
    [CrossRef] [PubMed]
  43. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  44. C.-M.  Chen and P. L.  Kelley, "Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis," J. Opt. Soc. Am. B  19, 1961-1967 (2002).
    [CrossRef]

2007

K. Digweed-Lyytikainen, C. A. de Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero, "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microw. Opt. Technol. Lett. 49, 872-874, (2007).
[CrossRef]

2006

D. H. Spadoti, C. A. de Francisco, V. E. Nascimento, B.-H. V. Borges, and M. A. Romero, "Full-vectorial to scalar FD-SOR formulations for optical waveguide modeling: A comparative study," Int. J. Numer. Model. 19, 507-520 (2006).
[CrossRef]

J. M.  Dudley, G.  Genty, and S.  Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys.  78, 1135-1184 (2006).
[CrossRef]

J. Lægsgaard and A. Bjarklev, "Microstructured optical fibers-fundamentals and applications," J. Am. Ceram. Soc. 89, 2-12 (2006).
[CrossRef]

J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Cross-phase modulation instability in photonic crystal fibers," Opt. Lett. 31, 873-875 (2006).
[CrossRef] [PubMed]

R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006).
[CrossRef] [PubMed]

F. Luan, A. Yulin, J. C. Knight, and D. V. Skryabin, "Polarization instability of solitons in photonic crystal fibers," Opt. Express 14, 6550-6556 (2006).
[CrossRef] [PubMed]

N.-K. Chen and S. Chi "Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers," Opt. Lett. 31, 2251-2253 (2006).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
[CrossRef] [PubMed]

A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov and A. M. Zheltikov, "Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy," Opt. Express 14, 10645-10651 (2006).
[CrossRef] [PubMed]

2005

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005)
[CrossRef]

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13,6181-6192 (2005).
[CrossRef] [PubMed]

2004

2003

J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
[CrossRef]

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

A. Proulx, J. Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003).
[CrossRef] [PubMed]

2002

2001

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

A. V. Husakou and J. Herrmann "Supercontinuum generation of higher-order solitons by fission in photonic crystal Fibers," Phys. Rev. Lett. 87, 203-901 (2001).
[CrossRef]

M. J. Steel and R. M. Osgood, Jr., "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
[CrossRef]

2000

1998

1997

1996

1995

N. Akhemediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

1992

1991

1989

R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

1986

Appl. Phys. B

B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005)
[CrossRef]

Appl. Phys. Lett.

M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola "Supercontinuum generation in a highly birefringent microstructured fiber," Appl. Phys. Lett. 82, 2197-2199 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, "Anomalous dispersion in photonic crystal Fiber," IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, "Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Ju, W. Jin, and M. S. Demokan, "Properties of a highly birefringent photonic crystal fiber," IEEE Photon. Technol. Lett. 15, 1375-1377 (2003).
[CrossRef]

Int. J. Numer. Model.

D. H. Spadoti, C. A. de Francisco, V. E. Nascimento, B.-H. V. Borges, and M. A. Romero, "Full-vectorial to scalar FD-SOR formulations for optical waveguide modeling: A comparative study," Int. J. Numer. Model. 19, 507-520 (2006).
[CrossRef]

J. Am. Ceram. Soc.

J. Lægsgaard and A. Bjarklev, "Microstructured optical fibers-fundamentals and applications," J. Am. Ceram. Soc. 89, 2-12 (2006).
[CrossRef]

J. Opt. A

F. Biancalana and D. V. Skryabin, "Vector modulational instabilities in ultra-small core optical fibres," J. Opt. A 6, 301-306 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Jap. J. App. Phys.

J. Fini and R. Bise. "Progress in fabrication and modeling of microstructured optical fiber," Jap. J. App. Phys. 43, 5717-5730 (2004).
[CrossRef]

Microw. Opt. Technol. Lett.

K. Digweed-Lyytikainen, C. A. de Francisco, D. Spadoti, A. A. Juriollo, J. B. Rosolem, J. B. M. Ayres Neto, B. V. Borges, J. Canning, and M. A. Romero, "Photonic crystal optical fibers for dispersion compensation and Raman amplification: design and experiment," Microw. Opt. Technol. Lett. 49, 872-874, (2007).
[CrossRef]

Opt. Express

G. Genty, M. Lehtonen, and H. Ludvigsen, J. Broeng, M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1096 (2002).
[PubMed]

A. Proulx, J. Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003).
[CrossRef] [PubMed]

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, "Dispersive wave generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
[CrossRef] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13,6181-6192 (2005).
[CrossRef] [PubMed]

F. Luan, A. Yulin, J. C. Knight, and D. V. Skryabin, "Polarization instability of solitons in photonic crystal fibers," Opt. Express 14, 6550-6556 (2006).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006).
[CrossRef] [PubMed]

A. V. Mitrofanov, Y. M. Linik, R. Buczynski, D. Pysz, D. Lorenc, I. Bugar, A. A. Ivanov, M. V. Alfimov, A. B. Fedotov and A. M. Zheltikov, "Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: A promising fiber light source for nonlinear Raman microspectroscopy," Opt. Express 14, 10645-10651 (2006).
[CrossRef] [PubMed]

Opt. Lett.

N.-K. Chen and S. Chi "Influence of a holey cladding structure on spectral characteristics of side-polished endlessly single-mode photonic crystal fibers," Opt. Lett. 31, 2251-2253 (2006).
[CrossRef] [PubMed]

J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Cross-phase modulation instability in photonic crystal fibers," Opt. Lett. 31, 873-875 (2006).
[CrossRef] [PubMed]

R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006).
[CrossRef] [PubMed]

H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim "Tunable photonic crystal fiber coupler based on a side-polishing technique," Opt. Lett. 29, 1194-1196 (2004).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
[CrossRef]

J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

C. R. Menyuk, M. N. Islam and J. P. Gordon, "Raman effect in birefringent optical fibers," Opt. Lett. 16, 566-568 (1991).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A Birks, and P. St. J. Russell, "Highly birefringent photonic crystal fibers," Opt. Lett. 25, 1325-1327 (2000).
[CrossRef]

D. Mogilevtsev, T. A. Birks, and P. St. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
[CrossRef]

M. J. Steel and R. M. Osgood, Jr., "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
[CrossRef]

Phys. Rev. A

N. Akhemediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

Phys. Rev. Lett.

F. Lu, Q. Lin, W. H. Knox and G. P. Agrawal, "Vector soliton fission," Phys. Rev. Lett. 93, 183901 (2004).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann "Supercontinuum generation of higher-order solitons by fission in photonic crystal Fibers," Phys. Rev. Lett. 87, 203-901 (2001).
[CrossRef]

Rev. Mod. Phys.

J. M.  Dudley, G.  Genty, and S.  Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys.  78, 1135-1184 (2006).
[CrossRef]

Science

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other

N.-K. Chen and S. Chi, "Evanescent wave photonic crystal fiber tunable filter using dispersive optical polymers," Optical Fiber Communication Conference. Technical Digest. OFC/NFOEC 3, 3pp. (2005).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Microstructured optical fiber geometries. (a) D-MF, and (b) whole MF. In both cases the air holes are completely circular.

Fig. 2.
Fig. 2.

Left: Modal effective area versus wavelength for different MF cuts. The upper limit is the whole MF (triangles). Right: Dispersion characteristics for the fast and slow principal axes.

Fig. 3.
Fig. 3.

Left: Birefringence as a function of wavelength for different MF cuts. Right: Group delay and dispersion for the D-MF depicted in Fig. 1(a).

Fig. 4.
Fig. 4.

Supercontinua generated in an 8cm long D-MF. Top row 2kW, middle row 5kW, and bottom row 10kW. Each column represents a different alignment condition, so from left to right: along the slow axis (0°), along the fast axis (90°), along the slow axis at 45°, along the fast axis at 45°. (b) Top row 1kW, middle row 2.5kW, and bottom row 5kW. First and second columns indicate pump aligned at 0° and 90° with respect to the slow axis, respectively.

Fig. 5.
Fig. 5.

Temporal evolution plotted in logarithmic scale obtained with the pump aligned at 45° with respect to the slow axis. The peak powers for each case are, from left to right, 2kW, 5kW, and 10kW.

Fig. 6.
Fig. 6.

Spectrogram of the SC generated after 8cm of D-MF. The input pulse is a hyperbolic secant with TFWHM=100fs, λ = 680nm, and alignment angle of 45°. The peak powers are: a) 2kW, b) 5kW, and c) 10kW.

Fig. 7.
Fig. 7.

SC and ellipticity for pump laser aligned at different angles. (a) 2°, (b) 88°. Top row 2kW, middle row 5kw, and bottom row 10kW. SC in the slow(fast) axis is shown in blue(red).

Tables (1)

Tables Icon

Table 1. Taylor series expansion terms for both principal axes, truncated at β9 (λ=680nm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A n z + ( 1 ) n + 1 δβ 1 A n T + m 2 i m 1 β mn m ! m A n T m =
i γ n ( 1 + i τ SHOCK , n T ) { ( 1 f R ) [ A n A n 2 + 2 3 A n A 3 n 2 + 1 3 A n * A 3 n 2 exp ( ( 1 ) n 2 i Δβz ) ] +
f R [ A n T f 1 ( T τ ) A n ( τ ) 2 + A n T f 2 ( T τ ) A 3 n ( τ ) 2 d τ +
A 3 n T f 3 ( T τ ) ( A n A 3 n * + A n * A 3 n exp ( ( 1 ) n 2 i Δβz ) ) ] } n = 1,2
S ( ω , τ ) = A ( t ) g ( t τ ) exp ( iωt ) dt 2
e p = 2 Im [ A ˜ 1 * ( λ ) A ˜ 2 ( λ ) ] A ˜ 1 ( λ ) 2 + A ˜ 2 ( λ ) 2

Metrics