Abstract

Using metallic nanoislands, we demonstrate the localized plasmonic control and modification of the spontaneous emission from closely-packed nanocrystal emitters, leading to significant changes in their collective emission characteristics tuned spectrally and spatially by plasmon coupling. Using randomly-distributed silver nanoislands, we show that the emission linewidth of proximal CdSe/ZnS core-shell quantum dots is reduced by 22% and their peak emission wavelength is shifted by 14nm, while their ensemble photoluminescence is enhanced via radiative energy transfer by 21.6 and 15.1 times compared to the control groups of CdSe/ZnS nanocrystals with identical nano-silver but no dielectric spacer and the same nanocrystals alone, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290,314-317 (2000).
    [CrossRef] [PubMed]
  2. D. Alexson, H. Chen, M. Cho, M. Dutta, Y. Li, P. Shi, A. Raichura, D. Ramadurai, S. Parikh, M. A. Stroscio, and M. Vasudev, "Semiconductor nanostructures in biological applications," J. Phys.: Condens. Mat. 17,R637-R656 (2005).
    [CrossRef]
  3. S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18,065709 (2007).
    [CrossRef]
  4. R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, and E. Lifshitz, "Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles," J. Phys. Chem. C 111,10841-10847 (2007).
  5. A. A. Chistyakov, I. L. Martynov, K. E. Mochalov, V. A. Oleinikov, S. V. Sizova, E. A. Ustinovich, and K. V. Zakharchenko, "Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films," Laser Phys. 16,No. 12, 1625-1632 (2006).
    [CrossRef]
  6. P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, "Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control," Nature Nanotechnology 1,126-130 (2006).
    [CrossRef]
  7. J-H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano Lett. 5,No. 8, 1557-1561 (2005).
    [CrossRef] [PubMed]
  8. K. Okamoto, S. Vyawahare, and A. Scherer, "Surface-plasmon enhanced bright emission from CdSe quantum dot-nanocrystals," J. Opt. Soc. Am. B. 23,No. 8, 1674-1678 (2006).
    [CrossRef]
  9. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2,No. 12, 1449-1452 (2002).
    [CrossRef]
  10. K. Ray, R. Badugu, and J. R. Lakowicz, "Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study," J. Am. Chem. Soc. 128,8998-8999 (2006).
    [CrossRef] [PubMed]
  11. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface-plasmon-coupled emission of quantum dots," J. Phys. Chem. B. 109,1088-1093 (2005).
    [CrossRef]
  12. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89,No. 11, 117401 (2002).
    [CrossRef] [PubMed]
  13. J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications," Anal. Biochem. 298,1-24 (2001).
    [CrossRef] [PubMed]
  14. M. Kawasaki and S. Mine, "Highly efficient surface-enhanced fluorescence on Ag island film of large pseudotabular nanoparticles," Chem. Lett. 34,No. 7, 1038-1039 (2005).
    [CrossRef]
  15. V. L. Schlegel and T. M. Cotton, "Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity," Anal. Chem. 63,241-247 (1991).
    [CrossRef] [PubMed]
  16. K. Sonnichsen, Plasmons in metal nanostructures (Ludwig-Maximilians-University of Munich, 2001).
  17. T. Nakamura and S. Hayashi, "Enhancement of dye fluorescence by gold nanoparticles: Analysis of particle size dependence," Jpn. J. Appl. Phys. 44,No. 9A, 6833-6837 (2005).
    [CrossRef]
  18. T. Okamoto, I. Yamaguchi, and T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25,No. 6, 372-374 (2000).
    [CrossRef]
  19. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337,171-194 (2005).
    [CrossRef] [PubMed]
  20. S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A 9S419-S424 (2007)
    [CrossRef]
  21. H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
    [CrossRef]
  22. S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
    [CrossRef]
  23. E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15(3),1128-1134 (2007).
    [CrossRef]
  24. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
    [CrossRef]

2007 (6)

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18,065709 (2007).
[CrossRef]

R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, and E. Lifshitz, "Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles," J. Phys. Chem. C 111,10841-10847 (2007).

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A 9S419-S424 (2007)
[CrossRef]

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

E. Mutlugun, I. M. Soganci, and H. V. Demir, "Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV," Opt. Express 15(3),1128-1134 (2007).
[CrossRef]

2006 (4)

A. A. Chistyakov, I. L. Martynov, K. E. Mochalov, V. A. Oleinikov, S. V. Sizova, E. A. Ustinovich, and K. V. Zakharchenko, "Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films," Laser Phys. 16,No. 12, 1625-1632 (2006).
[CrossRef]

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, "Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control," Nature Nanotechnology 1,126-130 (2006).
[CrossRef]

K. Okamoto, S. Vyawahare, and A. Scherer, "Surface-plasmon enhanced bright emission from CdSe quantum dot-nanocrystals," J. Opt. Soc. Am. B. 23,No. 8, 1674-1678 (2006).
[CrossRef]

K. Ray, R. Badugu, and J. R. Lakowicz, "Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study," J. Am. Chem. Soc. 128,8998-8999 (2006).
[CrossRef] [PubMed]

2005 (6)

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface-plasmon-coupled emission of quantum dots," J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

M. Kawasaki and S. Mine, "Highly efficient surface-enhanced fluorescence on Ag island film of large pseudotabular nanoparticles," Chem. Lett. 34,No. 7, 1038-1039 (2005).
[CrossRef]

T. Nakamura and S. Hayashi, "Enhancement of dye fluorescence by gold nanoparticles: Analysis of particle size dependence," Jpn. J. Appl. Phys. 44,No. 9A, 6833-6837 (2005).
[CrossRef]

D. Alexson, H. Chen, M. Cho, M. Dutta, Y. Li, P. Shi, A. Raichura, D. Ramadurai, S. Parikh, M. A. Stroscio, and M. Vasudev, "Semiconductor nanostructures in biological applications," J. Phys.: Condens. Mat. 17,R637-R656 (2005).
[CrossRef]

J-H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano Lett. 5,No. 8, 1557-1561 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337,171-194 (2005).
[CrossRef] [PubMed]

2002 (3)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2,No. 12, 1449-1452 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89,No. 11, 117401 (2002).
[CrossRef] [PubMed]

2001 (1)

J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications," Anal. Biochem. 298,1-24 (2001).
[CrossRef] [PubMed]

2000 (2)

T. Okamoto, I. Yamaguchi, and T. Kobayashi, "Local plasmon sensor with gold colloid monolayers deposited upon glass substrates," Opt. Lett. 25,No. 6, 372-374 (2000).
[CrossRef]

V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290,314-317 (2000).
[CrossRef] [PubMed]

1991 (1)

V. L. Schlegel and T. M. Cotton, "Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity," Anal. Chem. 63,241-247 (1991).
[CrossRef] [PubMed]

Anal. Biochem. (2)

J. R. Lakowicz, "Radiative decay engineering: biophysical and biomedical applications," Anal. Biochem. 298,1-24 (2001).
[CrossRef] [PubMed]

J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337,171-194 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

V. L. Schlegel and T. M. Cotton, "Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity," Anal. Chem. 63,241-247 (1991).
[CrossRef] [PubMed]

Chem. Lett. (1)

M. Kawasaki and S. Mine, "Highly efficient surface-enhanced fluorescence on Ag island film of large pseudotabular nanoparticles," Chem. Lett. 34,No. 7, 1038-1039 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Ray, R. Badugu, and J. R. Lakowicz, "Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study," J. Am. Chem. Soc. 128,8998-8999 (2006).
[CrossRef] [PubMed]

J. Opt. A (1)

S. Nizamoglu and H. V. Demir, "Nanocrystal based hybrid white light generation with tunable color parameters," J. Opt. A 9S419-S424 (2007)
[CrossRef]

J. Opt. Soc. Am. B. (1)

K. Okamoto, S. Vyawahare, and A. Scherer, "Surface-plasmon enhanced bright emission from CdSe quantum dot-nanocrystals," J. Opt. Soc. Am. B. 23,No. 8, 1674-1678 (2006).
[CrossRef]

J. Phys. Chem. B. (1)

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W. C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface-plasmon-coupled emission of quantum dots," J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

J. Phys. Chem. C (1)

R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, and E. Lifshitz, "Optical properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles," J. Phys. Chem. C 111,10841-10847 (2007).

J. Phys.: Condens. Mat. (1)

D. Alexson, H. Chen, M. Cho, M. Dutta, Y. Li, P. Shi, A. Raichura, D. Ramadurai, S. Parikh, M. A. Stroscio, and M. Vasudev, "Semiconductor nanostructures in biological applications," J. Phys.: Condens. Mat. 17,R637-R656 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Nakamura and S. Hayashi, "Enhancement of dye fluorescence by gold nanoparticles: Analysis of particle size dependence," Jpn. J. Appl. Phys. 44,No. 9A, 6833-6837 (2005).
[CrossRef]

Laser Phys. (1)

A. A. Chistyakov, I. L. Martynov, K. E. Mochalov, V. A. Oleinikov, S. V. Sizova, E. A. Ustinovich, and K. V. Zakharchenko, "Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films," Laser Phys. 16,No. 12, 1625-1632 (2006).
[CrossRef]

Nano Lett. (2)

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2,No. 12, 1449-1452 (2002).
[CrossRef]

J-H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano Lett. 5,No. 8, 1557-1561 (2005).
[CrossRef] [PubMed]

Nanotechnology (2)

S. Nizamoglu, T. Ozel, E. Sari, and H. V. Demir, "White light generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodes," Nanotechnology 18,065709 (2007).
[CrossRef]

S. Nizamoglu and H. V. Demir, "Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes," Nanotechnology 18, 405702 (2007).
[CrossRef]

Nature Nanotechnology (1)

P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, "Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control," Nature Nanotechnology 1,126-130 (2006).
[CrossRef]

New J. Phys. (1)

H. V. Demir, S. Nizamoglu, T. Ozel, E. Mutlugun, I. O. Huyal, E. Sari, E. Holder, and N. Tian, "White light generation tuned by dual hybridization of nanocrystals and conjugated polymers," New J. Phys. 9, 362 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Phys. Rev. B 66, 153305 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89,No. 11, 117401 (2002).
[CrossRef] [PubMed]

Science (1)

V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290,314-317 (2000).
[CrossRef] [PubMed]

Other (1)

K. Sonnichsen, Plasmons in metal nanostructures (Ludwig-Maximilians-University of Munich, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM images of our four exemplary silver nanoisland films: (a) with 20 nm mass thickness, not annealed, (b) with 20 nm mass thickness, annealed at 300 °C for 10 min, (c) with 6 nm mass thickness, annealed at 150°C for 1 min, and (d) with 2 nm mass thickness, annealed at 150°C for 2 min.

Fig. 2.
Fig. 2.

Optical absorption spectra of silver with film thickness of 4 nm annealed at 300°C for 20 min, silver (2 nm) annealed at 150 °C for 2 min, silver (6 nm) annealed at 150°C for 2 min, and silver (6 nm) annealed at 150 °C for 2 min and subsequently also covered with a 10 nm thick SixOy layer.

Fig. 3.
Fig. 3.

Optical absorption spectra of nano-silver film (with a mass thickness of 20 nm and annealed at 300 °C for 10 min) and that also covered with a 10 nm thick SixOy layer, compared with the photoluminescence spectrum of CdSe/ZnS nanocrystals (of 1.9 nm in diameter).

Fig. 4.
Fig. 4.

Photoluminescence peak intensity of CdSe/ZnS nanocrystals with nano-silver (20 nm) and a dielectric spacer (10 nm silicon oxide) between them is 21.6 times stronger than that of the same CdSe/ZnS nanocrystals with identical nano-silver (20 nm) but no dielectric spacer and is 15.1 times stronger than that of the same CdSe/ZnS nanocrystals alone.

Fig. 5.
Fig. 5.

Photoluminescence peak wavelength of CdSe/ZnS nanocrystals is shifted by 14 nm (from 492 nm to 506 nm) and its emission linewidth is reduced by 10 nm (from 45 nm to 35 nm) with localized plasmon coupling.

Tables (1)

Tables Icon

Table 1. Average diameters of silver nanoislands for different deposition conditions

Metrics