Abstract

The fluorescence from a single molecule can be strongly enhanced near a metal nanoparticle acting as an optical antenna. We demonstrate the spectral tunability of this antenna effect and show that maximum enhancement is achieved when the emission frequency is red-shifted from the surface plasmon resonance of the particle. Our experimental results, using individual gold and silver particles excited at different laser-frequencies, are in good agreement with an analytical theory which predicts a different spectral dependence of the radiative and non-radiative decay rates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  2. S. K¨uhn, S. U. H°akanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  3. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
    [CrossRef] [PubMed]
  4. Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006).
    [CrossRef]
  5. D. W. Pohl, "Near-field optics seen as an antenna problem," in Near-field Optics, Principles and Applications, X. Zhu, and M. Ohtsu, eds. (World Scientific, Singapore, 2000), pp 9-21.
  6. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
    [CrossRef]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  9. T. Kalkbrenner, U. H°akanson, A. Sch¨adle, S. Burger, C. Henkel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
    [CrossRef] [PubMed]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  11. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer Series in Optical Sciences, New York, 2006).
  12. Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
    [CrossRef]
  13. G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
    [CrossRef]
  14. H. Metiu, "Surface Enhanced Spectroscopy," Prog. Surf. Sci. 17, 153-320 (1984).
    [CrossRef]
  15. V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
    [CrossRef]
  16. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
    [CrossRef]
  17. Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
    [CrossRef] [PubMed]
  18. R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
    [CrossRef]
  19. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
    [CrossRef] [PubMed]
  20. J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
    [CrossRef]
  21. V. Giannini, J. A. S’anchez-Gil, J. V. Garc’ýa-Ramos, and E. R. M’endez, "Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures," J. Chem. Phys. 127, 044702 (2007).
    [CrossRef] [PubMed]
  22. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  23. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
    [CrossRef] [PubMed]
  24. M. A. Lieb, J. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
    [CrossRef]

2007 (2)

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
[CrossRef] [PubMed]

V. Giannini, J. A. S’anchez-Gil, J. V. Garc’ýa-Ramos, and E. R. M’endez, "Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures," J. Chem. Phys. 127, 044702 (2007).
[CrossRef] [PubMed]

2006 (4)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. K¨uhn, S. U. H°akanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006).
[CrossRef]

2005 (4)

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. H°akanson, A. Sch¨adle, S. Burger, C. Henkel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

2002 (1)

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

2001 (2)

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

2000 (2)

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
[CrossRef]

1998 (1)

R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
[CrossRef]

1984 (2)

G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

H. Metiu, "Surface Enhanced Spectroscopy," Prog. Surf. Sci. 17, 153-320 (1984).
[CrossRef]

1972 (1)

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Azoulay, J.

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

Bawendi, M. G.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Carminati, R.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
[CrossRef]

Chen, Y.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Debarre, A.

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

Ducloy, M.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Fisher, B. R.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Ford, G. W.

G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Giannini, V.

V. Giannini, J. A. S’anchez-Gil, J. V. Garc’ýa-Ramos, and E. R. M’endez, "Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures," J. Chem. Phys. 127, 044702 (2007).
[CrossRef] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
[CrossRef] [PubMed]

Greffet, J.-J.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
[CrossRef]

Hecht, B.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Henkel, C.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Huang, Fu Min

Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, U. H°akanson, A. Sch¨adle, S. Burger, C. Henkel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Klimov, V. V.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
[CrossRef]

Lee, R. K.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Letokhov, V. S.

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
[CrossRef]

Lieb, M. A.

Metiu, H.

H. Metiu, "Surface Enhanced Spectroscopy," Prog. Surf. Sci. 17, 153-320 (1984).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Munechika, K.

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

M. A. Lieb, J. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Pohl, D.W.

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Richard, A.

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

Richards, D.

Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Tchenio, P.

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

Vigoureux, J. M.

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Weber, W. H.

G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Yariv, A.

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

Zavislan, J.

Europhys. Lett. (1)

J. Azoulay, A. Debarre, A. Richard, and P. Tchenio, "Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips," Europhys. Lett. 51, 374-380 (2000).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

V. Giannini, J. A. S’anchez-Gil, J. V. Garc’ýa-Ramos, and E. R. M’endez, "Electromagnetic model and calculations of the surface-enhanced Raman-shifted emission from Langmuir-Blodgett films on metal nanostructures," J. Chem. Phys. 127, 044702 (2007).
[CrossRef] [PubMed]

J. Opt. A : Pure Appl. Opt. (1)

Fu Min Huang, and D. Richards, "Fluorescence enhancement and energy transfer in apertureless scanning near- field optical microscopy," J. Opt. A : Pure Appl. Opt. 8, S234-S238 (2006).
[CrossRef]

J. Opt. Soc. Am. A. (1)

R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, "Reciprocity of evanescent electromagnetic waves," J. Opt. Soc. Am. A. 15, 706-712 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Letters (1)

Y. Chen, K. Munechika, and D. S. Ginger, "Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles," Nano Letters 7, 690-696 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006).
[CrossRef]

Phys. Rep. (1)

G. W. Ford, and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113, 195-287 (1984).
[CrossRef]

Phys. Rev. A (1)

Y. Xu, R. K. Lee, and A. Yariv, "Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity," Phys. Rev. A 61, 033808 (2000).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (7)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, "Longitudinal field modes probed by single molecules," Phys. Rev. Lett. 86, 5251-5254 (2001).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, "Surface-enhanced emission from single semiconductor nanocrystals," Phys. Rev. Lett. 89, 117401 (2002).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

S. K¨uhn, S. U. H°akanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. H°akanson, A. Sch¨adle, S. Burger, C. Henkel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Prog. Surf. Sci. (1)

H. Metiu, "Surface Enhanced Spectroscopy," Prog. Surf. Sci. 17, 153-320 (1984).
[CrossRef]

Quantum Electron. (1)

V. V. Klimov, M. Ducloy, and V. S. Letokhov, "Spontaneous emission in the presence of nanobodies," Quantum Electron. 31, 569-586 (2001).
[CrossRef]

Science (1)

P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005).
[CrossRef]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).

M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer Series in Optical Sciences, New York, 2006).

D. W. Pohl, "Near-field optics seen as an antenna problem," in Near-field Optics, Principles and Applications, X. Zhu, and M. Ohtsu, eds. (World Scientific, Singapore, 2000), pp 9-21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the experiment. An optical antenna in the form of a gold or silver nanoparticle attached to the end of a pointed glass tip is interacting with individual fluorescent molecules excited at frequency ω 1 and emitting at frequency ω 2. The inset shows an SEM image of a 80nm gold particle attached to an HF etched glass tip. (b) Definition of coordinates used in the theoretical analysis.

Fig. 2.
Fig. 2.

Fluorescence enhancement near a 60nm gold nanoparticle excited with wavelength λ = 650nm. (a) Quantum yield (blue) and excitation rate enhancement (red). (b) Emission enhancement. The emission wavelength is taken to be same as the excitation wavelength. The solid curves are exact results based on the MMP method and the dashed curves are approximations (Eqs. 3, 6, 8).

Fig. 3.
Fig. 3.

Calculated fluorescence enhancement near gold and silver nanoparticles of 80nm diameter. (a) Spectral dependence at a distance of z = 10nm. The arrow marks the plasmon resonance of a gold nanoparticle in air. The corresponding resonance for silver is at around 360nm.(b) Distance dependence at a wavelength of λ = 488nm. Experimental data from Ref. [22] was used for the dielectric constants of gold and silver.

Fig. 4.
Fig. 4.

Near-field fluorescence rate images of Alexa488 molecules recorded using (a) an 80nm gold particle and (b) an 80nm silver particle excited at λ = 488nm. At this wavelength the enhancement for the silver particle is more than 10 times stronger than for the gold particle, consistent with the predictions of Fig. 3.. The image in (a) reflects the confocal excitation spot whereas the image in (b) represents the localized fields at the silver particle.

Fig. 5.
Fig. 5.

Fluorescence enhancement as a function of molecule-particle separation for two different particles (gold and silver) and two different excitation wavelengths. (a) Alexa488 molecule excited by a 80nm silver particle irradiated with λ = 488nm. (b) Nile Blue molecule excited by a 80nm gold particle irradiated with λ = 637nm. The unity baseline for fluorescence enhancement is determined using the measured fluorescence when the antenna is retracted far away from the molecule (∼ 500nm). Both curves show a decrease at short distances due to fluorescence quenching.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ em γ em o = γ exc γ exc o q q o
q = γ r γ r o γ r γ r o + γ abs γ r o + ( 1 q o ) q o .
γ abs γ r o = 3 16 Im ε ( ω 2 ) 1 ε ( ω 2 ) + 1 1 k 2 3 z 3 ( p x 2 + p y 2 + 2 p z 2 ) p 2 ,
γ r γ r o = p + p induced 2 p 2 = n p + k 2 2 1 ε 0 α p ( ω 2 ) G ( r p , r o ; ω 2 ) n p 2 ,
α ( ω 2 ) = 4 π ε o a 3 ε ( ω 2 ) 1 ε ( ω 2 ) + 2 I
γ r γ r o = 1 + 2 a 3 ( a + z ) 3 ε ( ω 2 ) 1 ε ( ω 2 ) + 2 2 ,
γ exc γ exc o = n p · [ I + k 1 2 G ( r o , r p ; ω 1 ) α ( ω 1 ) ε o ] n E o 2 n p · n E o 2
γ exc γ exc o = 1 + 2 a 3 ( a + z ) 3 ε ( ω 2 ) 1 ε ( ω 2 ) + 2 2 .

Metrics