T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).

[CrossRef]
[PubMed]

M. D–Angelo, M. V. Chekhova, and Y. Shih , “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

G. Bjork and L. L. Sánchez-Soto, “Entangled-state Lithography: Tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001).

[CrossRef]
[PubMed]

C. C. Gerry and R. A. Campos, “Generation of maximally entangled photonic states with a quantum-optical Fredkin gate,” Phys. Rev. A 64, 063814 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

Y. H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000).

[CrossRef]

E. J. S. Fonseca, C. H. Monken, and S. Páuda, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).

[CrossRef]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel , “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044~2046 (1987).

[CrossRef]
[PubMed]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Phil. Mag. 8, 261274 (1879).

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

G. Bjork and L. L. Sánchez-Soto, “Entangled-state Lithography: Tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001).

[CrossRef]
[PubMed]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

C. C. Gerry and R. A. Campos, “Generation of maximally entangled photonic states with a quantum-optical Fredkin gate,” Phys. Rev. A 64, 063814 (2001).

[CrossRef]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

M. D–Angelo, M. V. Chekhova, and Y. Shih , “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).

[CrossRef]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

M. D–Angelo, M. V. Chekhova, and Y. Shih , “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).

[CrossRef]
[PubMed]

E. J. S. Fonseca, C. H. Monken, and S. Páuda, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).

[CrossRef]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

C. C. Gerry and R. A. Campos, “Generation of maximally entangled photonic states with a quantum-optical Fredkin gate,” Phys. Rev. A 64, 063814 (2001).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel , “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044~2046 (1987).

[CrossRef]
[PubMed]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).

[CrossRef]
[PubMed]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000).

[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

Y. H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000).

[CrossRef]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel , “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044~2046 (1987).

[CrossRef]
[PubMed]

E. J. S. Fonseca, C. H. Monken, and S. Páuda, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).

[CrossRef]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel , “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044~2046 (1987).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

E. J. S. Fonseca, C. H. Monken, and S. Páuda, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).

[CrossRef]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Phil. Mag. 8, 261274 (1879).

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

G. Bjork and L. L. Sánchez-Soto, “Entangled-state Lithography: Tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001).

[CrossRef]
[PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

M. D–Angelo, M. V. Chekhova, and Y. Shih , “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).

[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000).

[CrossRef]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).

[CrossRef]
[PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).

[CrossRef]
[PubMed]

K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature 431, 167–170 (2004).

[CrossRef]
[PubMed]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).

[CrossRef]
[PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, “De Broglie wavelength of a non-local four-photon state,” Nature 429, 158–161 (2004).

[CrossRef]
[PubMed]

L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Phil. Mag. 8, 261274 (1879).

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: towards arbitrary two-dimensional patterns,” Phys Rev. A 63, 063407 (2001).

[CrossRef]

T. B. Pittman, Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Experimental tests of Bell’s inequalities based on space-time and spin variables,” Phys. Rev. A 51, 3495 – 3498 (1995).

[CrossRef]
[PubMed]

Y. H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).

[CrossRef]

Y. H. Kim, S. P. Kulik, and Y. Shih, “High-intensity pulsed source of space-time and polarization double-entangled photon pairs,” Phys. Rev. A 62, 011802 (2000).

[CrossRef]

C. C. Gerry and R. A. Campos, “Generation of maximally entangled photonic states with a quantum-optical Fredkin gate,” Phys. Rev. A 64, 063814 (2001).

[CrossRef]

K. Edamatsu, R. Shimizu, and T. Itoh, “Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion,” Phys. Rev. Lett. 89, 213601 (2002).

[CrossRef]
[PubMed]

J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005).

[CrossRef]
[PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel , “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044~2046 (1987).

[CrossRef]
[PubMed]

N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000).

[CrossRef]
[PubMed]

G. Bjork and L. L. Sánchez-Soto, “Entangled-state Lithography: Tailoring any pattern with a single state,” Phys. Rev. Lett. 86, 4516–4519 (2001).

[CrossRef]
[PubMed]

E. J. S. Fonseca, C. H. Monken, and S. Páuda, “Measurement of the de Broglie wavelength of a multiphoton wave packet,” Phys. Rev. Lett. 82, 2868–2871 (1999).

[CrossRef]

M. D–Angelo, M. V. Chekhova, and Y. Shih , “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87, 013602 (2001).

[CrossRef]

K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polym. Adv. Technol. 17, 72–82 (2006).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy of a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four entangled photons,” Science 316, 726–729 (2007).

[CrossRef]
[PubMed]