Abstract

A localized surface plasmon nanolithography (LSPN) technique is proposed and demonstrated to produce patterns with a sub-20nm line width. High transmission efficiency is realized by adjusting the period of grating. The well-regulated grating structures in metallic mask are employed to excite surface plasmon polaritons (SPPs) on the illuminated side. The SPP waves propagate toward the tip along the taper surfaces which cause most of energy accumulation at the tip and give rise to high local field enhancements in a near-field region around the tip. The amplitude of local electric field intensity is quite large and the line width can be confined within sub-20nm, at the same time, the contrast and spatial resolution are greatly enhanced, which can facilitate nanolithography efficiently with simple ultraviolet light sources.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
    [CrossRef]
  2. S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
    [CrossRef]
  3. M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
    [CrossRef]
  4. H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
    [CrossRef]
  5. M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
    [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
    [CrossRef]
  7. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
    [CrossRef]
  8. X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004).
    [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
    [CrossRef]
  10. W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
    [CrossRef]
  11. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
    [CrossRef] [PubMed]
  12. D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107/1-3(2005).
    [CrossRef]
  13. M. I.  Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004).
    [CrossRef] [PubMed]
  14. A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
    [CrossRef]
  15. D. L. Mills, "Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces," Phys. Rev. B 65, 125419/1-11 (2002).
    [CrossRef]
  16. I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
    [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  18. F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
    [CrossRef] [PubMed]
  19. Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
    [CrossRef] [PubMed]
  20. J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
    [CrossRef]

2005 (2)

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

2004 (4)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

2003 (3)

M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

1999 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

1997 (1)

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

1996 (1)

S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
[CrossRef]

1994 (1)

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

1993 (1)

J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aizenberg, J.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

Ambati, M.

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Chen, S. C.

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107/1-3(2005).
[CrossRef]

Chou, S. Y.

S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Chung, S. W.

H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
[CrossRef] [PubMed]

Durant, S.

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
[CrossRef] [PubMed]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Friedman, R. S.

M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Garcýá-Vidal, F. J.

F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

Gungor, A.

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
[CrossRef] [PubMed]

Ishihara, T.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Krauss, P. R.

S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
[CrossRef]

Levenson, M. D.

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
[CrossRef] [PubMed]

Li, Z.

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Lieber, C. M.

M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Liu, Z.

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
[CrossRef] [PubMed]

McAlpine, M. C.

M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

Melngailis, J.

J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
[CrossRef]

Mills, D. L.

D. L. Mills, "Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces," Phys. Rev. B 65, 125419/1-11 (2002).
[CrossRef]

Mirkin, C. A.

H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
[CrossRef]

Paul, K. E.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

Renstrom, P. J.

S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
[CrossRef]

Rogers, J. A.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107/1-3(2005).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
[CrossRef] [PubMed]

Srituravanich, W.

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Stockman, M. I.

M. I.  Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004).
[CrossRef] [PubMed]

Sun, C.

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

Tian, J.

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

Whitesides, G. M.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
[CrossRef] [PubMed]

Zhang, C.

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
[CrossRef]

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Zhou, W.

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004).
[CrossRef]

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, "Imaging the irradiance distribution in the optical near field," Appl. Phys. Lett. 71, 3773-3775 (1997).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. V. Zayats and I. I. Smolyaninov, "Near-field photonic: surface plasmon polaritons and locallized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16-S50 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. D. Levenson, "Extending the lifetime of optical lithography technologies with wavefront engineering," Jpn. J. Appl. Phys. 33, 6765-6773 (1994).
[CrossRef]

Nano Lett. (4)

M. C. McAlpine, R. S. Friedman, and C. M. Lieber, "Nanoimprint Lithography for Hybrid Plastic Electronics," Nano Lett. 3, 443-445 (2003).
[CrossRef]

H. Zhang, S. W. Chung, and C. A. Mirkin, "Fabrication of sub-50 nm Solid-State. Nanostructures Based on Dip-Pen Nanolithography," Nano Lett. 1, 43-45 (2003).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, "Plasmonic nanolithography," Nano Lett. 4, 1085-1088 (2004).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Melngailis, "Focused ion beam lithography," Nucl. Instrum. Methods Phys. Res. B 80, 1271-1280 (1993).
[CrossRef]

Opt. Express. (2)

X. Luo and T. Ishihara, "Subwavelength photolithography based on surface-plasmon polariton resonance," Opt. Express. 12, 3055-3065 (2004).
[CrossRef] [PubMed]

Z. Li, J. Tian, Z. Liu, W. Zhou, and C. Zhang, "Enhanced light transmission through a single subwavelength aperture in layered films consisting of metal and dielectric," Opt. Express. 13, 9071-9077 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Science (1)

S. Y.  Chou, P. R.  Krauss, and P. J.  Renstrom, "Imprint lithography with 25-nanometer resolution," Science  272, 85-87 (1996).
[CrossRef]

Other (5)

F. J. Garcýá-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901/1-4 (2003).
[CrossRef] [PubMed]

D. L. Mills, "Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces," Phys. Rev. B 65, 125419/1-11 (2002).
[CrossRef]

I. I. Smolyaninov, A. V. Zayats, A. Gungor, and C. C. Davis, "Single-Photon Tunneling via Localized Surface Plasmons," Phys. Rev. Lett. 88, 187402/1-4 (2002).
[CrossRef] [PubMed]

D. B. Shao and S. C. Chen, "Surface-plasmon-assisted nanoscale photolithography by polarized light," Appl. Phys. Lett. 86, 253107/1-3(2005).
[CrossRef]

M. I.  Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404/1-4 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic configuration of simulated LSPN structure which is mainly composed of grooves and tapers.

Fig. 2.
Fig. 2.

(a). Schematic picture of a single tapered structure. (b) Sketch of tapered structure with grooves in the input surface. (c) The enhancement of normalized-to-area transmission efficiency as a function of the number of ridges in input surface (L=320nm, W=15nm, F=20nm, M=50nm, B=100nm, and H=2nm).

Fig. 3.
Fig. 3.

(a). Snapshot of steady fields: Normal component Ex and longitudinal component Ez of the local optical electric field (L=320nm, D=140nm, W=15nm, F=20nm, M=20nm, B=100nm, and H=2nm). (b) Enhancement of |E|2 at the tip for different ridges number (L=320nm, D=300nm, W=15nm, F=20nm, M=50nm, B=100nm, and H=2nm).

Fig. 4.
Fig. 4.

(a). Light intensity distribution in the mask and the photoresist in the case of surface plasmon excitation and localized surface plasmon accumulation (L=320nm, D=140nm, W=15nm, F=20nm, M=20nm, B=100nm, and H=2nm). (b) Electric field intensity profile in the photoresist at the position of 5nm below the interface of potoresist and tip.

Fig. 5.
Fig. 5.

Decay of |E| amplitude along the Z direction for different tip widths.

Fig. 6.
Fig. 6.

Line width chart at different tip widths

Metrics