Abstract

Electroluminescence at 1.28μm is observed in a nanopatterned silicon test structure that has been subjected to carbon implantation followed by solid-phase epitaxial regrowth for recrystalization. The sub-bandgap luminescence comes from a di-carbon complex known as ‘G center’. Enrichment of silicon with carbon atoms has been achieved in a procedure consisting of two implantations and solid-phase epitaxial regrowth. Nanopatterning was done using an anodized aluminum oxide membrane as a mask for reactive ion etching. Along with the electroluminescence, an enhanced photoluminescence was measured.

© 2007 Optical Society of America

Full Article  |  PDF Article
Related Articles
Semiconductor Lasers

Marshall I. Nathan
Appl. Opt. 5(10) 1514-1528 (1966)

Highly sensitive MOS photodetector with wide band responsivity assisted by nanoporous anodic aluminum oxide membrane

Yungting Chen, Tzuhuan Cheng, Chungliang Cheng, Chunhsiung Wang, Chihwei Chen, Chihming Wei, and YangFang Chen
Opt. Express 18(1) 56-62 (2010)

Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh
Opt. Express 18(19) 20439-20444 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
    [Crossref]
  2. L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
    [Crossref]
  4. M. Lipson, “Guiding, modulating, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
    [Crossref]
  5. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
    [Crossref] [PubMed]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
    [Crossref] [PubMed]
  7. L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
    [Crossref]
  8. L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
    [Crossref]
  9. A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
    [Crossref]
  10. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
    [Crossref]
  11. O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
    [Crossref]
  12. H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
    [Crossref] [PubMed]
  13. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
    [Crossref] [PubMed]
  14. F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
    [Crossref]
  15. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
    [Crossref] [PubMed]
  16. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, “Point defect engineered Si sub-bandgap light-emitting diode,” Opt. Express 15, 6727–6733 (2007).
    [Crossref] [PubMed]
  17. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
    [Crossref] [PubMed]
  18. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
    [Crossref]
  19. L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
    [Crossref]
  20. S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
    [Crossref]
  21. G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
    [Crossref]
  22. R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
    [Crossref]
  23. G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
    [Crossref]
  24. G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
    [Crossref]
  25. M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
    [Crossref]
  26. G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
    [Crossref]
  27. E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
    [Crossref]
  28. A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
    [Crossref]
  29. P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
    [Crossref]
  30. J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
    [Crossref]
  31. L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
    [Crossref]
  32. S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
    [Crossref]
  33. J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
    [Crossref]
  34. J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
    [Crossref]

2007 (1)

2006 (5)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
[Crossref]

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]

2005 (6)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
[Crossref]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on silicon challenges and opportunities,” J. Lightwave Technol. 23, 4222–4238 (2005).
[Crossref]

2004 (2)

A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

2002 (1)

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

2001 (1)

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

2000 (1)

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

1999 (2)

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]

E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]

1998 (2)

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]

1996 (2)

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]

1991 (1)

G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]

1990 (1)

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

1989 (2)

G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

1987 (1)

L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]

1986 (1)

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

1985 (1)

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

1983 (1)

G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]

1980 (1)

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Assanto, G.

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]

Auret, F. D.

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

Axmann, A.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Aziz, M. J.

Baeri, P.

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Bao, J.

Barraclough, K.

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]

Benson, B. W.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

Bowers, J. E.

Boyraz, O.

Brian, H.

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

Brink, D. J.

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

Campisano, S. U.

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Canham, L.

L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]

Capasso, F.

Capaz, R. B.

R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]

Charnvanichborikarn, S.

Chik, H.

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

Cloutier, S.

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]

Cohen, O.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Colace, L.

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]

Crupi, I.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Davies, G

G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]

Davies, G.

G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]

G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

Davis, R. J.

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Deenapanray, P. N. K.

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

do Carmo, M.

G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]

Dolgolenko, A.

A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]

Eisele, K.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Ennen, H.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Fang, A. W.

Fathpour, S.

Foti, G.

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Franck, T.

Franz, G.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Franzo, G.

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Gaidar, G.

A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]

Gomelsky, L.

L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]

Grimaldi, M. G.

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Gwilliam, R. M.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Habermeier, H. U.

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Haydl, W.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Hodge, D.

Hoffmann, L.

E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]

Homewood, K. P.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Hsu, C.-H.

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

Irrera, A.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4610 (2006).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon raman laser,” Opt. Express 12, 5269–5272 (2005).
[Crossref]

L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]

Joannopoulos, J. D.

R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]

Jones, R.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14, 9203–9210 (2006).
[Crossref] [PubMed]

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Keil, U. D.

Kenyon, A.

A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]

Kim, T.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]

Kosseyrev, P.

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]

Kun, K.

G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]

Kuo, Y. H.

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

lacona, F.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Lavrov, E.

E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]

Ledain, S.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Lee, S. R.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Liang, J.

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

Liao, L.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Lightowlers, E C

G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]

Lightowlers, E.

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

Lipson, M.

Liu,

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Liu, A.

Liu, A. S.

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, J. M.

L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]

Lockwood, D. J.

L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).

Londos, C.

M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]

Lourenco, M. A.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Malherbe, J. B.

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

Masini, G.

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]

Mayer, J. W.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Mazzoleni, C.

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Miritello, M. P.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Morse, M.

Naval, L.

L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, “Optimization of Si1-xGex/Si waveguide photodetectors operating at λ = 1.3 μm,” J. Lightwave Technol. 14, 787–797 (1996).
[Crossref]

Negro, L. D.

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Ng, W. L.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Nicolaescu, R.

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Nielsen, B. B.

E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]

Pacifici, D.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Paniccia, M.

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Paniccia, M. J.

Park, H.

Pavesi, L.

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).

Perret, N. E.

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

Picraux, S. T.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Pino, A. Dal

R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]

Pomrenke, G.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Potsidi, M.

M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]

Presti, C. D.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

Priolo, F.

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Reade, T.

G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]

Rimini, E.

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

Robbins, D.

L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]

Rong, H. S.

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Rubin, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High-speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref] [PubMed]

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

Sawyer, W. D.

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Schneider, J.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

Shao, G.

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

Singh, M.

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Song, L. W.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

Stein, H. J.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Strane, J. W.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Tabbal, M.

Thomaz, M.

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

Varentsov, M.

A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]

Watanabe, J. K.

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

Watking, G. D.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

Weber, J.

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Williams, J. S.

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

Xu, J. M.

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

Xu, S. B.

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

Yin, A.

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

Zhan, X. D.

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

Adv. Mater. (1)

S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[Crossref]

Appl. Phys. A (1)

J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, “Photoluminescene detection of impurities introduced in silicon by dry etching processes,” Appl. Phys. A 41, 175–178 (1986).
[Crossref]

Appl. Phys. Lett. (3)

L. Canham, K. Barraclough, and D. Robbins, “1.3μm light-emitting diode from silicon electron irradiated at its damage threshold,” Appl. Phys. Lett. 51, 1509–1511 (1987).
[Crossref]

S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, “Solute trapping by moving interface in ion-implanted silicon,” Appl. Phys. Lett. 37, 719–722 (1980).
[Crossref]

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381–383 (1985).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approach to the detection of near-infrared light,” IEEE J. Quantum Electron. 35, 1843–1852 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, “Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quantum Electron. 12, 1596–1606 (2006).
[Crossref]

J. Appl. Phys. (4)

J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, “Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy,” J. Appl. Phys. 79, 637–645 (1996).
[Crossref]

J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template,” J. Appl. Phys. 91, 2544–2564 (2002).
[Crossref]

P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, “Characterization of optically active defects created by noble gas ion bombardment of silicon,” J. Appl. Phys. 83, 4075–4080 (1998).
[Crossref]

M. Potsidi and C. Londos, “The CiCs(Si-i) defect in silicon: An infrared spectroscopy study,” J. Appl. Phys. 100, 033523-033523-4 (2006).
[Crossref]

J. Lightwave Technol. (3)

J. Phys. C (1)

G Davies, E C Lightowlers, and M. do Carmo, “Carbon-related vibronic bands in electron-irradiated silicon,” J. Phys. C 16, 5503–5515 (1983).
[Crossref]

Nature (4)

Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref] [PubMed]

W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, and K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,” Nature 410, 192–194 (2001).
[Crossref] [PubMed]

H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, “A continuous-wave raman silicon laser,” Nature 433, 725–728 (2005).
[Crossref] [PubMed]

L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000).
[Crossref] [PubMed]

Nature Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nature Mater. 4, 887–891, (2005).
[Crossref]

Opt. Express (4)

Phys. Rep. (1)

G. Davies, “the optical properties of luminescence centres in silicon,” Phys. Rep. 176, 83–188 (1989).
[Crossref]

Phys. Rev. B (4)

L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, “bistable interstitial-carbon-substitutional-carbon pair in silicon,” Phys. Rev. B 42, 5765–5782 (1990).
[Crossref]

G. Davies, K. Kun, and T. Reade, “Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon,” Phys. Rev. B 44, 12146–12157 (1991).
[Crossref]

R. B. Capaz, A. Dal Pino, and J. D. Joannopoulos, “Theory of carbon-carbon pairs in silicon,” Phys. Rev. B 58, 9845–9850 (1998).
[Crossref]

E. Lavrov, L. Hoffmann, and B. B. Nielsen, “Local vibrational modes of the metastable dicarbon center (CsCi) in silicon,” Phys. Rev. B 60, 8081–8086, (1999).
[Crossref]

Physica Status Solidi B (1)

A. Dolgolenko, M. Varentsov, and G. Gaidar, “Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si,” Physica Status Solidi B 241, 2914–2922 (2004).
[Crossref]

Semiconductor Science and Technology (2)

G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, “The temperature dependence of the 969 meV ‘G’ optical transition in silicon,” Semiconductor Science and Technology 4, 200–206 (1989).
[Crossref]

A. Kenyon, “Erbium in silicon,” Semiconductor Science and Technology 20, R65–R84 (2005).
[Crossref]

Other (2)

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley , Chichester, U.K, 2004).
[Crossref]

L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Schematic of the SPE growth process. A pristine Si lattice is amorphized by bombarding with Si ions followed by a carbon implantation. The crystal is then re-grown using the undamaged bottom layer as a seed layer. b. A SEM image of an AAO membrane atop a SOI wafer. c. A SEM image of an array of nanopores in the silicon wafer resulting from RIE through the AAO etch mask. The AAO has been removed after the etching.

Fig. 2.
Fig. 2.

Photoluminescence spectra of nanopatterned silicon and Si-C at 25K excited with 514nm line of argon ion laser. Bandedge PL at 1130nm and G-line at 1278nm are observed.

Fig. 3.
Fig. 3.

(a). Schematic drawing of the G center LED. (b). A SEM image of the nanoparrened region near one of the nickel strips. c. IV curve at room temperature.

Fig. 4.
Fig. 4.

Electroluminescence spectrum of G-center LED at 60K and a current of 50mA.

Fig. 5.
Fig. 5.

Electroluminescence mechanism of G center showing electrons and holes trapped in the acceptor and donor level, respectively, and the emission of a photon.

Metrics