Abstract

We report on the delivery of low energy ultra-short (<1 ps) laser pulses for laser induced breakdown spectroscopy (LIBS). Ultra-short pulses have the advantage of high peak irradiance even at very low pulse energies. This opens the possibility to use compact, rare-earth doped fiber lasers in a portable platform for point detection applications using LIBS for elemental analysis. The use of low energy ultra-short pulses minimizes the generation of a broad continuum background in the emission spectrum, which permits the use of non-gated detection schemes using very simple and compact spectrometers. The pulse energies used to produce high-quality LIBS spectra in this investigation are some of the lowest reported and we investigate the threshold pulse requirements for a number of near IR pulse wavelengths (785-1500 nm) and observe that the pulse wavelength has no effects on the threshold for observation of plasma emission or the quality of the emission spectra obtained.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983).
    [CrossRef]
  2. C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
    [CrossRef]
  3. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
    [CrossRef]
  4. Andrew Freedman, Frank J. Iannarilli Jr., and Joda C. Wormhoudt, "Aluminum alloy analysis unsing microchip-laser induced breakdown spectroscopy," Spec. Acta. B 60, 1076-1082 (2005).
    [CrossRef]
  5. A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
    [CrossRef] [PubMed]
  6. R. S. Harmon, F. C. DeLucia Jr., A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, "Discrimination and indentification of plastic landmine casings by single-shot broadband LIBS," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 5794 (2005).
    [CrossRef]
  7. F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
    [CrossRef]
  8. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, "Fiber-optic laser sensor for mine detection and verification," Appl. Opt. 45, 3817-3825 (2006).
    [CrossRef] [PubMed]
  9. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
    [CrossRef]
  10. R. S. Harmon, F. C. DeLuciaJr., A. LaPointe, and A. W. Miziolek, "Man-Portable LIBS for landmine detection," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 6217 (2006).
    [CrossRef]
  11. B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
    [CrossRef]
  12. Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
    [CrossRef]
  13. W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
    [CrossRef]
  14. J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002).
    [CrossRef]
  15. H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
    [CrossRef]
  16. A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
    [CrossRef]
  17. A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
    [CrossRef]
  18. K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
    [CrossRef]
  19. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
    [CrossRef]
  20. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
    [CrossRef] [PubMed]
  21. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. ColstonJr., J. Chance Carter, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099-6106 (2003).
    [CrossRef] [PubMed]
  22. M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
    [CrossRef]
  23. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
    [CrossRef]
  24. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
    [CrossRef]
  25. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000).
    [CrossRef] [PubMed]
  26. J. Koch, F. Korte, C. Fallnich, A. Ostendorf, and B. N. Chichkov, "Direct-write subwavelength structuring with femtosecond laser pulses," Opt. Eng. 44, 051103(1-5) (2005).
    [CrossRef]
  27. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  28. R. L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. Koenig, "Sub-100 nm nanostructuring of silicon by ultrashort laser pulses," Opt. Express 13, 6651-6656 (2005).
    [CrossRef] [PubMed]
  29. N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
    [CrossRef]
  30. G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
    [CrossRef]
  31. I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
    [CrossRef]
  32. K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
    [CrossRef]
  33. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
    [CrossRef]
  34. J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
    [CrossRef]
  35. IgorV. Cravetchi, Mike T. Taschuk, Ying Y. Tsui, and Robert Fedosejevs, "Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminum alloys," Anal. Bioanal. Chem. 385, 287-294 (2006).
    [CrossRef] [PubMed]
  36. M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
    [CrossRef]
  37. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
    [CrossRef]
  38. T. Tong, J. Li, and J. P. Longtin, "Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy," Appl. Opt. 43, 1971-1980 (2004).
    [CrossRef] [PubMed]
  39. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
    [CrossRef]
  40. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
    [CrossRef]
  41. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  42. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  43. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
    [CrossRef]
  44. D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
    [CrossRef]
  45. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared optical breakdown in transparent dieletrics," Phys. Rev. Lett.  91, 107601(4) (2003).
    [CrossRef] [PubMed]
  46. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
    [CrossRef]
  47. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
    [CrossRef]
  48. L. J. Radziemski and D. A. Cremers, Laser Induced Plasmas and Applications (CRC Press, New York, 1989).
  49. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  50. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
    [CrossRef]

2007 (2)

A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
[CrossRef]

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

2006 (9)

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

IgorV. Cravetchi, Mike T. Taschuk, Ying Y. Tsui, and Robert Fedosejevs, "Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminum alloys," Anal. Bioanal. Chem. 385, 287-294 (2006).
[CrossRef] [PubMed]

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, "Fiber-optic laser sensor for mine detection and verification," Appl. Opt. 45, 3817-3825 (2006).
[CrossRef] [PubMed]

2005 (8)

R. L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. Koenig, "Sub-100 nm nanostructuring of silicon by ultrashort laser pulses," Opt. Express 13, 6651-6656 (2005).
[CrossRef] [PubMed]

Andrew Freedman, Frank J. Iannarilli Jr., and Joda C. Wormhoudt, "Aluminum alloy analysis unsing microchip-laser induced breakdown spectroscopy," Spec. Acta. B 60, 1076-1082 (2005).
[CrossRef]

B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
[CrossRef]

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

2004 (4)

Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
[CrossRef]

W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

T. Tong, J. Li, and J. P. Longtin, "Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy," Appl. Opt. 43, 1971-1980 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (3)

J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002).
[CrossRef]

K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
[CrossRef]

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

2001 (5)

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

2000 (3)

H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
[CrossRef]

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000).
[CrossRef] [PubMed]

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

1999 (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

1998 (2)

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

1996 (2)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

1983 (1)

D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

1965 (1)

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Adams, S.

Amodeo, T.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

Amponsah-Manager, K.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

Angel, S. M.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

Anglos, D.

A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
[CrossRef]

A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
[CrossRef]

Anhut, T.

Annen, K. D.

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Arp, Z. A.

Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
[CrossRef]

Averback, R. S.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

Backus, S.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

Bauer, T.

J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002).
[CrossRef]

Benedetti, P. A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Berg, M. A.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

Bohling, C.

Brioschi, F.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Brodeur, A.

Brysbaert, A.

A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
[CrossRef]

Cahill, D. G.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

Chalupsky, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Chichkov, B. N.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Cihelka, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Colston, B. W.

Cremers, D. A.

B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
[CrossRef]

Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
[CrossRef]

D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Daniel, R. G.

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

Dantus, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

DeLucia, F.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

DeLucia, F. C.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Duesterer, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Egbert, A.

Eland, K. L.

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

Fallnich, C.

Fedosejevs, R.

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Ferrario, F.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Ferrence, S. C.

K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
[CrossRef]

Foerster, E.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Freedman, A.

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Frejafon, E.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

Garcia, J. F.

Giakoumaki, A.

A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
[CrossRef]

Gobert, O.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

Goode, S. R.

J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. ColstonJr., J. Chance Carter, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099-6106 (2003).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

Gornushkin, I. B.

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

Gross, A.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Gunaratne, T.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Gundrum, B.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

Hajkova, V.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Harmon, R. S.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

Harzic, R. L.

Hashida, M.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Heisterkamp, A.

H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
[CrossRef]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Hohmann, K.

Holl, G.

Horvath, C.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Iannarilli, F. J.

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Igor,

IgorV. Cravetchi, Mike T. Taschuk, Ying Y. Tsui, and Robert Fedosejevs, "Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminum alloys," Anal. Bioanal. Chem. 385, 287-294 (2006).
[CrossRef] [PubMed]

Izawa, Y.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Jones, S.

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Juha, L.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Juhasz, T.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Jurek, M.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Kangas, M.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Kapteyn, H.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Kirkwood, S. E.

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

Klinger, D.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Koenig, K.

Koptyaev, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Korte, F.

Krzywinski, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Kuba, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Lai, T.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

LaPointe, A.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Laserna, J. J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Lee, W. B.

W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
[CrossRef]

Lee, Y. I.

W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
[CrossRef]

Legnaioli, S.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Li, J.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Liu, X.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Loesel, F.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Longtin, J. P.

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

Lubatschowski, H.

H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
[CrossRef]

Maatz, G.

H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
[CrossRef]

Mateo, M.

K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
[CrossRef]

Maurice, S.

B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
[CrossRef]

Mazur, E.

McNesby, K. L.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

Melessanaki, K.

A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
[CrossRef]

A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
[CrossRef]

K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
[CrossRef]

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Miziolek, A. W.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Mourou, G.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Murnane, M.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Neitubyc, R.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Nolte, S.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Omenetto, N.

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

Ostendorf, A.

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Palleschi, V.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Pearman, W.

Pelka, J.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Pender, J.

Perner, F.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Petite, G.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

Redlin, H.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Reuter, M.

Rieger, G. W.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
[CrossRef]

Riemann, I.

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Rose, J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Ruske, J. P.

Salle, B.

B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
[CrossRef]

Salvetti, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Samuels, A. C.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003).
[CrossRef] [PubMed]

Sauer, D.

Scaffidi, J.

Schade, W.

Schaffer, C. B.

Scheel, D.

Schuck, H.

Semerok, A. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Serbin, J.

J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Singh, S.

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Smith, B. W.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

Sobierajski, R.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Sokolowski-Tinten, K.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Stojanovic, N.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Stratis, D. N.

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Taschuk, M.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
[CrossRef]

Taschuk, M. T.

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

Tien, A. C.

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

Toleikis, S.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Tong, T.

Tschentscher, T.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Tsui, Y. Y.

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
[CrossRef]

Tuennermann, A.

F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

Velyhan, A.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

von der Linde, D.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

Wagner, J. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Watanabe, F.

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

Wiens, R. C.

Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
[CrossRef]

Will, M.

Williamson, C. K.

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

Winefordner, J. D.

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

Winkel, R. J.

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

Wolf, J.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

Wormhoudt, J.

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Wu, J. Y.

W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
[CrossRef]

Yu, J.

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

Zastrau, U.

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Anal. Bioanal. Chem. (2)

A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007).
[CrossRef]

IgorV. Cravetchi, Mike T. Taschuk, Ying Y. Tsui, and Robert Fedosejevs, "Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminum alloys," Anal. Bioanal. Chem. 385, 287-294 (2006).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983).
[CrossRef]

C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998).
[CrossRef]

Appl (5)

Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001).
[CrossRef]

I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004).
[CrossRef]

J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. A (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

Appl. Phys. Lett. (1)

N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006).
[CrossRef]

Appl. Spec. Rev. (1)

W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004).
[CrossRef]

Appl. Surf. Sci. (4)

J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002).
[CrossRef]

K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002).
[CrossRef]

D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000).
[CrossRef]

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002).
[CrossRef]

Chem. Phys. Lett. (1)

T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006).
[CrossRef]

Fresenius J. Anal. Chem. (1)

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophth. (1)

H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000).
[CrossRef]

IEEE Sens. J. (1)

F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005).
[CrossRef]

J. Anal. At. Spectrom. (4)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006).
[CrossRef]

K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006).
[CrossRef]

J. Appl. Phys. (2)

F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006).
[CrossRef]

J. Arch. Sci. (1)

A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006).
[CrossRef]

J. of Physics: Conf. Ser. (1)

M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007).
[CrossRef]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

Spec. Acta. B (4)

G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003).
[CrossRef]

B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001).
[CrossRef]

Andrew Freedman, Frank J. Iannarilli Jr., and Joda C. Wormhoudt, "Aluminum alloy analysis unsing microchip-laser induced breakdown spectroscopy," Spec. Acta. B 60, 1076-1082 (2005).
[CrossRef]

Other (5)

R. S. Harmon, F. C. DeLuciaJr., A. LaPointe, and A. W. Miziolek, "Man-Portable LIBS for landmine detection," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 6217 (2006).
[CrossRef]

R. S. Harmon, F. C. DeLucia Jr., A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, "Discrimination and indentification of plastic landmine casings by single-shot broadband LIBS," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 5794 (2005).
[CrossRef]

J. Koch, F. Korte, C. Fallnich, A. Ostendorf, and B. N. Chichkov, "Direct-write subwavelength structuring with femtosecond laser pulses," Opt. Eng. 44, 051103(1-5) (2005).
[CrossRef]

L. J. Radziemski and D. A. Cremers, Laser Induced Plasmas and Applications (CRC Press, New York, 1989).

D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared optical breakdown in transparent dieletrics," Phys. Rev. Lett.  91, 107601(4) (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Beam waist measurements as a function of the propagation distance across the focus of an amplified Ti:Sapphire laser beam operating at 785 nm and 1 kHz. Data were fit to the propagation equation for determining the value of M2.

Fig. 2.
Fig. 2.

Atomic emission spectra of Cu obtained by laser-induced breakdown of a clean copper sheet using 785 nm, 150 fs amplified Ti:Sapphire laser pulses. Spectra were collected at different pulse energies as indicated on the figure using an un-gated handheld spectrometer. Spectra were normalized to the peak intensity of the 521.94 nm emission line and offset for clarity.

Fig. 3.
Fig. 3.

Pulse energy dependent atomic emission intensities at 521.94 nm obtained from 18 single spectral acquisitions of the laser-induced plasma emission from copper metal using 785 nm, 150 fs amplified Ti: Sapphire laser pulses.

Fig. 4.
Fig. 4.

Comparison of the atomic emission spectra of Cu obtained by laser-induced breakdown of a clean copper sheet using 150 fs, 5 μJ, 785 nm (top) and 18 ns, 200 mJ, 1064 nm (bottom) laser pulses. Gated acquisition with the ICCD for the 18 ns pulse measurement was accomplished 500 ns following the laser pulse with a gate-width of 2000 ns. Spectra were normalized to the peak intensity of the 521.94 nm emission line and offset for clarity.

Fig. 5.
Fig. 5.

Atomic emission spectra of Cu obtained by laser-induced breakdown of a clean copper sheet using 150 fs pulses from a tunable optical parametric amplifier operating at 1280 nm, 1360 nm and 1420 nm. Pulse energies used for each spectrum were 2 μJ corresponding to fluences of 1.90 J/cm2, 1.68 J/cm2, and 1.54 J/cm2 for 1280 nm, 1360 nm, and 1420 nm pulses respectively. Spectra were normalized to the peak intensity of the 521.94 nm emission line and offset for clarity.

Fig. 6.
Fig. 6.

Pulse energy dependent atomic emission spectra of Cu obtained by laser-induced breakdown of a clean copper sheet using 150 fs pulses of 1200 nm light from an optical parametric amplifier. Spectra were normalized to the peak intensity of the 521.94 nm emission line and offset for clarity.

Fig. 7.
Fig. 7.

Pulse energy dependent atomic emission spectra of Cu obtained by laser-induced breakdown of a clean copper sheet using 150 fs pulses of 1400 nm light from an optical parametric amplifier. Spectra were normalized to the peak intensity of the 521.94 nm emission line and offset for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W 2 ( z ) = W 0 2 + M 4 λ 2 π 2 W 0 2 ( z z 0 ) 2
w 0 = 1.22 M × λ × f / d .

Metrics