Abstract

We use Monte Carlo time-dependent simulations of light pulse propagation through turbulent water laden with particles to investigate the application of Multiple Field Of View (MFOV) lidar to detect and characterize oceanic turbulence. Inhomogeneities in the refractive index induced by temperature fluctuations in turbulent ocean flows scatter light in near-forward angles, thus affecting the near-forward part of oceanic water scattering phase function. Our results show that the oceanic turbulent signal can be detected by analyzing the returns from a MFOV lidar, after re-scaling the particulate back scattering phase function.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, and R. C. Truman, "Light scattering on oceanic turbulence," Appl. Opt. 43, 5662-5676 (2004).
    [CrossRef] [PubMed]
  2. D. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. V. Zaneveld, "Comparison of nearforward scattering on turbulence and particles," Appl. Opt. 37, 4669-4677 (1998).
    [CrossRef]
  3. J. S. Jaffe, "Monte-carlo modeling of underwater-image formation - validity of the linear and small-angle approximations," Appl. Opt. 34, 5413-5421 (1995).
    [CrossRef] [PubMed]
  4. D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996).
    [CrossRef]
  5. T. M. Dillon, "The energetics of overturning structures: Implications for the theory of fossil turbulence," J. Phys. Oceanogr. 14, 541-549 (1984).
    [CrossRef]
  6. A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995).
    [CrossRef]
  7. C. M. R. Platt, "Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns," J. Atmospheric Sciences 38, 156-167.
  8. E. Eloranta, "Practical model for the calculation of multiply scattered lidar returns," Appl. Opt. 37, 2464-2472 (1998).
    [CrossRef]
  9. L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
    [CrossRef] [PubMed]
  10. R. E. Walker, Marine light field statistics, (A Wiley Interscience Publication, 1994) p. 660 .
  11. J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
    [CrossRef]
  12. V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
    [CrossRef]
  13. M. Jonasz and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic Press, 2007).
  14. M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
    [CrossRef]
  15. V. Haltrin, "One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater," Appl. Opt. 41, 1022-1028 (2002).
    [CrossRef] [PubMed]
  16. H. R. Gordon, "Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment," Appl. Opt. 32, 7505-7511 (1993).
    [CrossRef] [PubMed]
  17. I. Katsev, E. Zege, A. Prikhach, and I. Polonsky, "Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems," J. Opt. Soc. Am. A 14, 1338-1346 (1997).
    [CrossRef]
  18. A. Kim and M. Moscoso, "Beam propagation in sharply peaked forward scattering media," J. Opt. Soc. Am. A 21(5), 797-803 (2004).
    [CrossRef]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

2004 (2)

2002 (2)

V. Haltrin, "One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater," Appl. Opt. 41, 1022-1028 (2002).
[CrossRef] [PubMed]

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

2001 (2)

J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

2000 (1)

V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
[CrossRef]

1998 (2)

1997 (1)

1996 (1)

D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996).
[CrossRef]

1995 (2)

J. S. Jaffe, "Monte-carlo modeling of underwater-image formation - validity of the linear and small-angle approximations," Appl. Opt. 34, 5413-5421 (1995).
[CrossRef] [PubMed]

A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995).
[CrossRef]

1993 (1)

1984 (1)

T. M. Dillon, "The energetics of overturning structures: Implications for the theory of fossil turbulence," J. Phys. Oceanogr. 14, 541-549 (1984).
[CrossRef]

Anis, A.

A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995).
[CrossRef]

Banakh, V.

V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
[CrossRef]

Barnard, A.

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Bissonnette, L.

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

Bogucki, D.

Bogucki, D. J.

Boss, E.

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Cober, S.

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

Dillon, T. M.

T. M. Dillon, "The energetics of overturning structures: Implications for the theory of fossil turbulence," J. Phys. Oceanogr. 14, 541-549 (1984).
[CrossRef]

Domaradzki, J. A.

Ecke, R. E.

Eloranta, E.

Farmer, D. M.

D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996).
[CrossRef]

Flatau, P.

J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

Gemmrich, J. R.

D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996).
[CrossRef]

Gordon, H. R.

Haltrin, V.

Isaac, G.

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

Jaffe, J. S.

Katsev, I.

Kim, A.

Macdonald, J.

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Moscoso, M.

Moum, J. N.

A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995).
[CrossRef]

Pegau, W.

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Piskozub, J.

J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

Platt, C. M. R.

C. M. R. Platt, "Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns," J. Atmospheric Sciences 38, 156-167.

Polonsky, I.

Poutier, L.

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

Prikhach, A.

Roy, G.

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

Smalikho, I.

V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
[CrossRef]

Stramski, D.

Truman, R. C.

Twardowski, M.

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Werner, C.

V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
[CrossRef]

Zaneveld, J.

J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

Zaneveld, J. R. V.

Zege, E.

Appl. Opt (2)

L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002).
[CrossRef] [PubMed]

V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000).
[CrossRef]

Appl. Opt. (6)

J. Atmospheric and Oceanic Technol. (1)

J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001).
[CrossRef]

J. Atmospheric Sciences (1)

C. M. R. Platt, "Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns," J. Atmospheric Sciences 38, 156-167.

J. Geophys. Research (1)

M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Oceanogr. (3)

D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996).
[CrossRef]

T. M. Dillon, "The energetics of overturning structures: Implications for the theory of fossil turbulence," J. Phys. Oceanogr. 14, 541-549 (1984).
[CrossRef]

A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995).
[CrossRef]

Other (3)

R. E. Walker, Marine light field statistics, (A Wiley Interscience Publication, 1994) p. 660 .

M. Jonasz and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic Press, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The vertical structure of the water column studied in this work. In all cases, the black bottom absorbs all emerging ’histories’ or photons and the light source and detector are located above a flat ocean surface. Case A: a 10 m thick turbulent layer starts at the surface. Case B: the turbulent layer is located at a 5 m depth. Case C: no turbulent layer. In all cases, the black bottom absorbs all emerging ’histories’ or photons and the light source and detector are located above a flat ocean surface.

Fig. 2.
Fig. 2.

Comparison of the volume scattering function (VSF, blue line) used in simulations with those due to quiescent waters with inorganic- and organic-dominated particulate loads typical of the ocean water. The blue line represents the combined turbulence VSF (θ < 2·10-3 rad) and the particle VSF of Haltrin [15]. The turbulence VSF contributes only at the near-forward angle range as denoted. The red and green lines represent the inorganic organic particle loads as calculated by using the Mie theory (for example [19]) by using the particle characteristics provided by Dr. Stramski

Fig. 3.
Fig. 3.

The normalized (by single scattering contribution) lidar signal M(z,θ), detected at FOV = 8·10-4 rad and 3 ·10-2 rad. The returned signal is normalized to return at FOV 1·10-5 rad - corresponding to the ballistic beam divergence. The depth is the range of the returned signal. For comparison, the black curve denotes scattering contribution estimates derived from Eq 3 for a doubly scattered contribution.

Fig. 4.
Fig. 4.

Cases A and B - the normalized lidar returns (M(z,θ)) at two selected FOV. The returning signal is normalized to its single scattering return (1 · 10-5 rad) corresponding to the ballistic beam divergence. The light scattering dominant process is given for each layer: either double scattering or photon diffusion in the angular space - Eq 5. The lidar return at the smallest FOV is multiplied by an arbitrary factor - either 600 (case A) or 400 (case B) - to allow for comparison.

Tables (1)

Tables Icon

Table 1. Summary of optical parameters of radiative transfer Monte Carlo runs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P ( z , θ ) = P ss ( z ) M ( z , θ ) ;
P ss ( z ) = K · P 0 z 2 β ( z , π ) exp [ 2 τ ( z ) ]
M ( z , θ ) 1 + ( z z 0 ) k ( 1 exp ( x 2 ) + x 1 2 ( 1 Erf ( x ) ) )
M ( z , θ ) 1 + g α 0 θ 0 2 ( 1 θ 2 ( z z 0 ) exp θ 2 ( z z 0 ) g α 0 θ 0 2 )
M ( z , θ ) 1 + θ 2 2 ( z z 0 ) θ 4 4 α 0 g θ 0 2 ( z z 0 ) 2 + O ( θ 6 ) .
θ 0 2 0 k · E T ( k ) dk

Metrics