Abstract

We report an experimental demonstration of the distribution of time-bin entangled photon pairs over 100 km of optical fiber. In our experiment, 1.5-μm non-degenerated time-bin entangled photon pairs were generated with a periodically poled lithium niobate (PPLN) waveguide by using the parametric down conversion process. Combining this approach with ultra-low-loss filters to eliminate the pump light and separate signal and idler photons, we obtained an efficient entangled photon pair source. To detect the photons, we used single-photon detectors based on frequency up-conversion. These detectors operated in a non-gated mode so that we could use a pulse stream of time correlated entangled photon pairs at a high repetition frequency (1 GHz). Using these elements, we distributed time-bin entangled photon pairs over 100 km of dispersion shifted fiber and performed a two-photon interference experiment. We obtained a coincidence fringe of 81.6% visibility without subtracting any background noise, such as accidental coincidence or dark count, which was good enough to violate Bell’s inequality. Thus, we successfully distributed time-bin entangled photon pairs over 100 km.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
    [CrossRef]
  2. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
    [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
    [CrossRef] [PubMed]
  5. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
    [CrossRef]
  6. H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
    [CrossRef]
  7. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, "Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber," Opt. Lett. 30, 1201-1203 (2005).
    [CrossRef] [PubMed]
  8. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
    [CrossRef] [PubMed]
  9. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
    [CrossRef] [PubMed]
  10. H. Takesue and K. Inoue, "Generation of 1.5-?m band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
    [CrossRef]
  11. H. Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006).
    [CrossRef] [PubMed]
  12. C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192WDMEnvironment", Optical Fiber Communications Conference (OFC2006), paper PDP35.
  13. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorunser, A. Poppe, and A. Zeilinger, "High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber," Opt. Express 15, 7853-7862 (2007).
    [CrossRef] [PubMed]
  14. D. Stucki, H. Zbinden, and N. Gisin, "A Fabry-Perot-like two-photon interferometer for high-dimensional timebin entanglement," J. Mod. Optics,  52, 2637-2648 (2005).
    [CrossRef]
  15. M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides," the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.
  16. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55-?m band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30, 293 (2005).
    [CrossRef] [PubMed]
  17. T. Honjo, H. Takesue, and K. Inoue, "Generation of energy-time entangled photon pairs in 1.5 ?m band with periodically poled lithium niobate waveguide," Opt. Express 15, 1679-1683 (2007).
    [CrossRef] [PubMed]
  18. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 ?m by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
    [CrossRef] [PubMed]
  19. A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).
  20. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, "Highly efficient single photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30, 1725-1727 (2005).
    [CrossRef] [PubMed]
  21. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
    [CrossRef]
  22. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, "100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors," Opt. Express 14, 13073-13082 (2006).
    [CrossRef] [PubMed]
  23. P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
    [CrossRef]
  24. H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

2007 (2)

2006 (3)

2005 (4)

2004 (5)

M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 ?m by means of frequency upconversion," Opt. Lett. 29, 1449-1451 (2004).
[CrossRef] [PubMed]

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004).
[CrossRef] [PubMed]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

1998 (2)

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Acin, A.

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Albota, M. A.

Asobe, M.

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Blauensteiner, B.

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Briegel, H. J.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Chen, J.

Cirac, J. I.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Diamanti, E.

Dur, W.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Ekert, A. K.

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Fejer, M. M.

Gisin, N.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

D. Stucki, H. Zbinden, and N. Gisin, "A Fabry-Perot-like two-photon interferometer for high-dimensional timebin entanglement," J. Mod. Optics,  52, 2637-2648 (2005).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Gisn, N.

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Honjo, T.

Hubel, H.

Inoue, K.

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Kumar, P.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).

Langrock, C.

Lederer, T.

Legre, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Li, X.

Lorunser, T.

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

Nishida, Y.

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Poppe, A.

Rarity, J. G.

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Riedmatten, H. D.

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Roussev, R. V.

Scarant, V.

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Sharping, J.

Sharping, J. E.

Stucki, D.

D. Stucki, H. Zbinden, and N. Gisin, "A Fabry-Perot-like two-photon interferometer for high-dimensional timebin entanglement," J. Mod. Optics,  52, 2637-2648 (2005).
[CrossRef]

Tadanaga, O.

Takesue, H.

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Tapster, P. R.

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).

Vanner, M. R.

Voss, P.

Voss, P. L.

Wong, F. N. C.

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

Yamamoto, Y.

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

D. Stucki, H. Zbinden, and N. Gisin, "A Fabry-Perot-like two-photon interferometer for high-dimensional timebin entanglement," J. Mod. Optics,  52, 2637-2648 (2005).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

Zeilinger, A.

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Zoller, P.

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, "High efficiency single photon detection via frequency up-conversion," J. Mod. Opt. 15, 1433-1445 (2004).

J. Mod. Optics (3)

D. Stucki, H. Zbinden, and N. Gisin, "A Fabry-Perot-like two-photon interferometer for high-dimensional timebin entanglement," J. Mod. Optics,  52, 2637-2648 (2005).
[CrossRef]

P. R. Tapster and J. G. Rarity, "Photon statistics of pulsed parametric light," J. Mod. Optics 45, 595-604 (1998).
[CrossRef]

H. D. Riedmatten, V. Scarant, I. Marcikic, A. Acin, W. Tittel, H. Zbinden and N. Gisn, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Optics 51, 1637-1649 (2004).

New J. Phys. (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8, 32 (2006)
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?" Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Phys. Rev. Lett. (5)

A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895-1899 (1993).
[CrossRef] [PubMed]

H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998).
[CrossRef]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004).
[CrossRef] [PubMed]

Other (4)

H. Takesue and K. Inoue, "Generation of 1.5-?m band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005).
[CrossRef]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, "Distribution of Fiber-Generated Polarization Entangled Photon-Pairs over 100 km of Standard Fiber in OC-192WDMEnvironment", Optical Fiber Communications Conference (OFC2006), paper PDP35.

H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70, 031802(R) (2004).
[CrossRef]

M. Asobe, H. Miyazawa, O. Tadanaga, Y. Nishida, and H. Suzuki, "Wavelength Conversion Using Quasi-Phase Matched LiNbO3 Waveguides," the Optical Electronics and Communications Conference, Yokohama, Japan, July 8-12 2002, paper PD2-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of frequency up-conversion detector.

Fig. 2.
Fig. 2.

Quantum efficiency as a function of signal light wavelength.

Fig. 3.
Fig. 3.

Experimental setup for entangled-photon distribution.

Fig. 4.
Fig. 4.

C value as a function of the average number of photon pairs per pulse.

Fig. 5.
Fig. 5.

Two-photon interference fringe and idler count rate with no transmission fiber.

Fig. 6.
Fig. 6.

Two-photon interference fringe and idler count rate after transmission over 100-km dispersion shifted fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c s = μ c α s + d s
c i = μ c α i + d i
C = R m R um = μ c α s α i c s c i + 1 .
V = R m R um R m + R um = μ c α s 2 α i 2 μ c α s 2 α i 2 + 2 ( μ c α s 2 + d s ) ( μ c α i 2 + d i ) .

Metrics