Abstract

We proposed and demonstrated a low-cost optical system for surface profilometry with nanometer-resolution. The system is based on a composite interferometer consisting of a Michelson interferometer and a Mach-Zehnder interferometer. With the proposed phase compensating mechanism, the phase deviation due to the instability of the optical delay system and environmental perturbation can be compensated simultaneously. The system can perform a wide-field imaging in the millimeter range and a measurement with the axial resolution within ±5 nm without special shielding and protection of the system as well as any special preparation of the sample.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Roy, C. J. R. Sheppard, G. Cox, and P. Hariharan, "White-light interference microscopy: a way to obtain high lateral resolution over an extended range of heights," Opt. Express 14, 6788-6793 (2006).
    [CrossRef] [PubMed]
  2. B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, "Measurement of surface topography of magnetic tapes by Mirau interferometry," Appl. Opt. 24, 1489-1497 (1985).
    [CrossRef] [PubMed]
  3. O. Sasaki and H. Okazaki, "Sinusoidal phase modulating interferometry for surface profile measurement," Appl. Opt. 25, 3137-3140 (1986).
    [CrossRef] [PubMed]
  4. Y. Ishii and R. Onodera, "Two-wavelength laser-diode interferometry that uses phase-shifting techniques," Opt. Lett. 16, 1523-1525 (1991).
    [CrossRef] [PubMed]
  5. E. Berger, W. von der Linden, V. Dose, M. Jakobi, and A. W. Koch, "Reconstruction of surfaces from phase-shifting speckle interferometry: Bayesian approach," Appl. Opt. 38, 4997-5003 (1999).
    [CrossRef]
  6. J. M. Kilpatrick, A. J. Moore, J. S. Barton, and J. D. C. Jones, "Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry," Opt. Lett. 25, 1068-1070 (2000).
    [CrossRef]
  7. M. Yokota, A. Asaka, and T. Yoshino, "Stabilized phase-shifting fringe analysis by use of current-induced frequency modulation of laser diodes," Appl. Opt. 40, 5023-5027 (2001).
    [CrossRef]
  8. A. Nava-Vega, L. Salas, E. Luna, and A. Cornejo-Rodríguez, "Correlation Algorithm to recover the phase of a test surface using Phase-Shifting Interferometry," Opt. Express 12, 5296-5306 (2004).
    [CrossRef] [PubMed]
  9. S. Wang, C. Quan, C. J. Tay, I. Reading, and Z. Chen, "Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry," Appl. Opt. 43, 49-56 (2004).
    [CrossRef] [PubMed]
  10. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, "Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers," J. Opt. Soc. Am. A 22, 2872-2879 (2005).
    [CrossRef]
  11. Y. Yasuno, Y. Sutoh, M. Nakama, S. Makita, M. Itoh, T. Yatagai, and M. Mori, "Spectral interferometric optical coherence tomography with nonlinear b-barium borate time gating," Opt. Lett. 27, 403-405 (2002).
    [CrossRef]
  12. T. Endo, Y. Yasuno, S. Makita, M. Itoh, and T. Yatagai, "Profilometry with line-field Fourier-domain interferometry," Opt. Express 13, 695-701 (2005).
    [CrossRef] [PubMed]
  13. R. W. Wyant, S. P. Almeida, and O. D. D. Soares, "Surface inspection via projection interferometry," Appl. Opt. 27, 4626-4630 (1988).
    [CrossRef]
  14. K. Hibino, R. Hanayama, J. Burke, and B. F. Oreb, "Tunable phase-extraction formulae for simultaneous shape measurement of multiple surfaces with wavelength-shifting interferometry," Opt. Express 12, 5579-5594 (2004).
    [CrossRef] [PubMed]
  15. B. S. Lee and T. C. Strand, "Profilometry with a coherence scanning microscope," Appl. Opt. 29, 3784-3788 (1990).
    [CrossRef] [PubMed]
  16. T. Dresel, G. Häusler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  17. C. C. Lai, C. H. Cheng, W. C. Chiu, and I. J. Hsu, "Simultaneous measurement of the refractive index, thickness, and position of suspended thin film," Proc. SPIE 6343, 634320-1-8 (2006).
    [CrossRef]

2006

2005

2004

2002

2001

2000

1999

1992

1991

1990

1988

1986

1985

Almeida, S. P.

Asaka, A.

Barbosa, E. A.

Barton, J. S.

Berger, E.

Bhushan, B.

Burke, J.

Chen, Z.

Cornejo-Rodríguez, A.

Cox, G.

Curcio, B. G.

Dose, V.

Dresel, T.

Endo, T.

Filho, A. A. V.

Gesualdi, M. R. R.

Hanayama, R.

Hariharan, P.

Häusler, G.

Hibino, K.

Ishii, Y.

Itoh, M.

Jakobi, M.

Jones, J. D. C.

Kilpatrick, J. M.

Koch, A. W.

Koliopoulos, C. L.

Lee, B. S.

Luna, E.

Makita, S.

Moore, A. J.

Mori, M.

Muramatsu, M.

Nakama, M.

Nava-Vega, A.

Okazaki, H.

Onodera, R.

Oreb, B. F.

Quan, C.

Reading, I.

Roy, M.

Salas, L.

Sasaki, O.

Sheppard, C. J. R.

Soares, O. D. D.

Soga, D.

Strand, T. C.

Sutoh, Y.

Tay, C. J.

Venzke, H.

von der Linden, W.

Wang, S.

Wyant, J. C.

Wyant, R. W.

Yasuno, Y.

Yatagai, T.

Yokota, M.

Yoshino, T.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

C. C. Lai, C. H. Cheng, W. C. Chiu, and I. J. Hsu, "Simultaneous measurement of the refractive index, thickness, and position of suspended thin film," Proc. SPIE 6343, 634320-1-8 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the composite interferometer. LD, laser diode; BS1, BS2, BS3 ,BS4, beamsplitters; Obj, objective; RM, reflection mirror; TS, two-axis translation stage; PZT, piezoelectric transducer; PD1, PD2, photodetectors; I, iris. Insets: The definitions of the surface height, h, and the starting position of the axial scanning of the optical delay component, d, where SR denotes the scanning range.

Fig. 2.
Fig. 2.

Measurement of the accuracy of the system by evaluating the surface height of a stationary reflection mirror in one thousand continuous scannings: (a) The evaluated surface height from the interference signals detected in photodetector 1, (b) the relative displacement of the axial scanning ranges detected by photodetector 2, (c) the axial resolution of the system after the phase compensation mechanism.

Fig. 3.
Fig. 3.

The time-lapse images of portion of an onion cell in the process of dehydration. The image sizes are 12.75 μm × 12.75 μm and the time interval between images is about ten minutes.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E S = E 0 S e j ( ωt + ϕ ) ,
ϕ = 4 π h λ ,
E R = E 0 R e j ω ( t τ ) ,
τ = 2 ( R S ) c ,
I 1 E S + E R 2
= E 0 S 2 + E 0 R 2 + 2 E 0 S E 0 R cos ( ω τ + ϕ ) .
Γ 1 = E 0 S E 0 R cos ( ω τ + ϕ ) .
E R = E 0 R e j [ ω ( t τ ) δ ] ,
δ = 4 π d λ ,
Γ 1 = E 0 S E 0 R cos ( ω τ + δ + ϕ ) .
Γ 2 = E 0 E 0 R cos ( ω τ + δ ) ,
τ = 2 ( R ) c ,

Metrics