Abstract

We report the first hard X-ray source driven by a femtosecond fiber laser. The high energy fiber CPA system incorporated a 65μm LMA fiber amplifying stage which provided 300-fs recompressed pulses and diffraction limited beam quality with M2 < 1.07. A deformable mirror was used to optimize the wavefront and the spot size was focused down to 2.3 μm with an f/1.2 paraboloidal mirror. 50μJ was deposited on the nickel target with 2×1015-W/cm2 focal intensity and a distinctive Ni Kα-line (7.48 keV) emission was measured with 5×10-8 energy conversion efficiency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
    [CrossRef] [PubMed]
  2. C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
    [CrossRef]
  3. R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
    [CrossRef]
  4. E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
    [CrossRef]
  5. A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
    [CrossRef] [PubMed]
  6. K. -H. Liao, K. -C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P. Mamidipudi, and A. Galvanauskas, "Diffraction-Limited 65-µm Core Yb-Doped LMA Fiber Based High Energy Fiber CPA Systems," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CPDB4.
    [PubMed]
  7. M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
    [CrossRef]
  8. B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
    [CrossRef]
  9. K. -H. Liao, M. -Y. Cheng, E. Flecher, V. I. Smirnov, L. B. Glebov, and A. Galvanauskas, "Large-aperture chirped volume Bragg grating based fiber CPA system," Opt. Express 15, 4876-4882 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (2)

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
[CrossRef] [PubMed]

2005 (1)

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

2003 (1)

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

2001 (1)

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

1999 (1)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
[CrossRef] [PubMed]

1997 (1)

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Albouy, P. A.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Andersson, E.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Antonetti, A.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Audebert, P.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Cavalleri, A.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
[CrossRef] [PubMed]

Chamberlain, C. C.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

Chang, Y.-C.

Chen, L. M.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

Cheng, M. -Y.

Cheng, M.-Y.

Flecher, E.

Forster, E.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Fourmaux, S.

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Galvanauskas, A.

Gauthier, J. C.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Geindre, J. P.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Glebov, L. B.

Gratz, M.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Hagedorn, M.

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

Hölzer, G.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Hou, B.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
[CrossRef] [PubMed]

Hou, K.-C.

Kieffer, J. C.

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Kieffer, J.-C.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

Kiernan, L.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Krol, A.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Kutzner, J.

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

Liao, K. -H.

Maksimchuk, A.

Martin, J. L.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Mordovanakis, A.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
[CrossRef] [PubMed]

Mourou, G.

A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
[CrossRef] [PubMed]

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

Nees, J.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

A. Mordovanakis, K.-C. Hou, Y.-C. Chang, M.-Y. Cheng, J. Nees, B. Hou, A. Maksimchuk, G. Mourou and A. Galvanauskas, "Demonstration of fiber-laser-produced plasma source and application to efficient extreme UV light generation," Opt. Lett. 31, 2517-2519 (2006).
[CrossRef] [PubMed]

Ozaki, T.

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Rischel, C.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Rousse, A.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Siders, C. W.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
[CrossRef] [PubMed]

Sjogren, A.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Smirnov, V. I.

Sokolowski-Tinten, K.

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
[CrossRef] [PubMed]

Svanberg, S.

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Toth, R.

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Tsilimis, G.

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

Uschmann, I.

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Wilcox, M.

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

Zacharias, H.

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

Appl. Phys. B (2)

M. Hagedorn, J. Kutzner, G. Tsilimis and H. Zacharias, "High-repetition-rate hard x-ray generation with submillijoule femtosecond laser pulses," Appl. Phys. B 77, 49-57 (2003).
[CrossRef]

B. Hou, J. Nees, A. Mordovanakis, M. Wilcox, G. Mourou, L. M. Chen, J.-C. Kieffer, C. C. Chamberlain and A. Krol, "Hard x-ray generation from solids driven by relativistic intensity in the lambda-cubed regime," Appl. Phys. B 83, 81-85 (2006).
[CrossRef]

J. Appl. Phys. (1)

E. Andersson, G. Hölzer, E. Forster, M. Gratz, L. Kiernan, A. Sjogren, and S. Svanberg, "Coronary angiography using laser plasma sources: X-ray source efficiency and optimization of a bent crystal monochromator," J. Appl. Phys. 90, 3048-3056 (2001).
[CrossRef]

Nature (London) (1)

C. Rischel, A. Rousse, I. Uschmann, P. A. Albouy, J. P. Geindre, P. Audebert, J. C. Gauthier, E. Forster, J. L. Martin, and A. Antonetti, "Femtosecond time-resolved X-ray diffraction from laser-heated organic films," Nature (London) 390, 490-492 (1997).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, "In-line phase-contrast imaging with a laser-based hard x-ray source," Rev. Sci. Instrum. 76, 083701-0837067 (2005).
[CrossRef]

Science (1)

C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty, "Detection of nonthermal melting by ultrafast x-ray diffraction," Science 286, 1340-1342 (1999).
[CrossRef] [PubMed]

Other (1)

K. -H. Liao, K. -C. Hou, G. Chang, V. Smirnov, L. Glebov, R. Changkakoti, P. Mamidipudi, and A. Galvanauskas, "Diffraction-Limited 65-µm Core Yb-Doped LMA Fiber Based High Energy Fiber CPA Systems," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CPDB4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the high energy FCPA system for X-ray generation. It uses a solid-state oscillator as a seeder. Pulse stretching and recompression are done by conventional metal-surface diffraction grating based stretcher and compressor. Four amplifiers, two single-mode, one 30-μm-core LMA amplifier and one 65-μm-core VLMA amplifiers, are used in the amplifying chain.

Fig. 2.
Fig. 2.

(a). Beam quality measurement of the 65-μm-core VLMA fiber using knife-edge method with a 75-mm focusing lens. The curve fit of the measured data shows the beam has M2=1.07. (b). Beam profile measurement with collimated beam using a CCD camera. It shows a symmetrical LP01 mode profile with FWHM 2-mm diameter.

Fig. 3.
Fig. 3.

Frequency resolved optical gating (FROG) measured profile. (a). Original measured profile. (b). Reconstructed temporal profile with 300-fs FWHM and the measured spectrum at 65-μJ recompressed pulse energy.

Fig. 4.
Fig. 4.

The fiber laser produced x-ray source experimental chamber. A deformable mirror is used to optimize the focus of an off-axis paraboloidal mirror. The visible spectrometer measures the second harmonic emitted along the specular direction to find the optimum target position. The X-rays are measured with a CdTe cooled detector (Amptek).

Fig. 5.
Fig. 5.

The laser focal spot imaged by a 60× microscope objective before (a) and after (b) the deformable mirror optimization. The optimized spot full width at half maximum is 2.3μm.

Fig. 6.
Fig. 6.

The Ni plasma spectral energy density per 1-keV bandwidth emitted into the half space per second. The bremsstrahlung extends to photon energies up to 22 keV and corresponds to an electron temperature Te = 3.6 keV. The insert shows the bremsstrahlung subtracted relative intensity plot of the K α and K β, lines on a linear scale. The focal intensity is I = 2.8×1015 W/cm2 with a pulse energy of 50μJ at the target.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ηK α = T Be η CdTe 2 π Ω CdTe N K α ħω K α P Laser

Metrics