Abstract

We study the origin of antisymmetric perturbation of the fiber in arc-induced long-period gratings that couple the core mode into the antisymmetric cladding modes. We demonstrate that this perturbation is caused by the temperature gradient in the fiber, which is induced, in turn, by the temperature gradient in the arc discharge. The reproducibility of the process of the grating inscription is higher when the fiber is placed in a region with larger temperature gradient.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Rego, R. Falate, J. L. Fabris, J. L. Santos, H. M. Salgado, S. L. Semjonov, and E. M. Dianov, "Arc-induced long-period gratings in aluminosilicate glass fibers," Opt. Lett. 30, 2065-2067 (2005).
    [CrossRef] [PubMed]
  2. G. Rego, A. Fernandez Fernandez, A. Gusarov, B. Brichard, F. Berghmans, J. L. Santos, and H. M. Salgado, "Effect of ionizing radiation on the properties of long-period fiber gratings," Appl. Opt. 44, 6258-6263 (2005).
    [CrossRef] [PubMed]
  3. G. Rego, R. Falate, O. Ivanov, and J. L. Santos, "Simultaneous temperature and strain measurements performed by a step-changed arc-induced long-period fiber grating," Appl. Opt. 46, 1392-1396 (2007).
    [CrossRef] [PubMed]
  4. G. Rego, O. Ivanov, and P. V. S. Marques, "Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings," Opt. Express 14, 9594-9599 (2006).
    [CrossRef] [PubMed]
  5. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  6. M. Tachikura, "Fusion mass-splicing for optical fibers using electric discharges between two pairs of electrodes," Appl. Opt. 23, 492-498 (1984).
    [CrossRef] [PubMed]
  7. F. Durr, G. Rego, P. V. S. Marques, S. L. Semjonov, E. Dianov, H. G. Limberger, and R. P. Salathé, "Stress profiling of arc-induced long period fiber gratings," J. Lightwave Technol. 23, 3947-3953 (2005).
    [CrossRef]
  8. R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
    [CrossRef]
  9. G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
    [CrossRef]
  10. G. Rego, O. Ivanov, P. V. S. Marques, and J. L. Santos, "Investigation of formation mechanisms of arc-induced long-period fiber gratings," in Proc. of OFS-18, paper TuE84 (2006).
  11. S. A. Vasiliev and O. I. Medvedkov, "Long-period refractive index fiber gratings: properties, applications, and fabrication techniques," Proc. SPIE 4083,212-223 (2000).
    [CrossRef]

2007

2006

2005

2004

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

2002

R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
[CrossRef]

2000

S. A. Vasiliev and O. I. Medvedkov, "Long-period refractive index fiber gratings: properties, applications, and fabrication techniques," Proc. SPIE 4083,212-223 (2000).
[CrossRef]

1984

Berghmans, F.

Brichard, B.

Demokan, M. S.

Dianov, E.

Dianov, E. M.

Doremus, R. H.

R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
[CrossRef]

Durr, F.

Fabris, J. L.

Falate, R.

Fernandez Fernandez, A.

Gusarov, A.

Ho, H. L.

Hoo, Y. L.

Ivanov, O.

Jin, W.

Limberger, H. G.

Marques, P. V. S.

Medvedkov, O. I.

S. A. Vasiliev and O. I. Medvedkov, "Long-period refractive index fiber gratings: properties, applications, and fabrication techniques," Proc. SPIE 4083,212-223 (2000).
[CrossRef]

Rego, G.

Salathé, R. P.

Salgado, H. M.

Santos, J. L.

Santos, L. M. N. B. F.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

Schröder, B.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

Semjonov, S. L.

Tachikura, M.

Vasiliev, S. A.

S. A. Vasiliev and O. I. Medvedkov, "Long-period refractive index fiber gratings: properties, applications, and fabrication techniques," Proc. SPIE 4083,212-223 (2000).
[CrossRef]

Xiao, L.

Zhao, C.

Appl. Opt.

IEEE Photon. Technol. Lett.

G. Rego, L. M. N. B. F. Santos, B. Schröder, P. V. S. Marques, J. L. Santos, and H. M. Salgado, "In situ temperature measurement of an optical fiber submitted to electric arc discharges," IEEE Photon. Technol. Lett. 16, 2111-2113 (2004).
[CrossRef]

J. Appl. Phys.

R. H. Doremus, "Viscosity of silica," J. Appl. Phys. 92, 7619-7629 (2002).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. SPIE

S. A. Vasiliev and O. I. Medvedkov, "Long-period refractive index fiber gratings: properties, applications, and fabrication techniques," Proc. SPIE 4083,212-223 (2000).
[CrossRef]

Other

G. Rego, O. Ivanov, P. V. S. Marques, and J. L. Santos, "Investigation of formation mechanisms of arc-induced long-period fiber gratings," in Proc. of OFS-18, paper TuE84 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Photograph of the arc discharge showing its asymmetry.

Fig. 2.
Fig. 2.

Fiber diameter reduction versus the number of discharges.

Fig. 3.
Fig. 3.

Fiber temperature and fluidity along the y axis.

Fig. 4.
Fig. 4.

Fiber temperature and fluidity along the z axis.

Fig. 5.
Fig. 5.

Fluidity ratio between two sides of the fiber along the y and z axes.

Fig. 6.
Fig. 6.

(a). Photograph of a fiber modified by arc discharges; (b) shift of the fiber central line.

Fig. 7.
Fig. 7.

Asymmetric deformation of a silica capillary (56/125 μm) submitted to an arc-discharge.

Fig. 8.
Fig. 8.

Resonance wavelengths as a function of the geometric modulation.

Fig. 9.
Fig. 9.

(a). Refractive index change due to the shift of the fiber core; (b) refractive index change along the x axis.

Fig. 10.
Fig. 10.

Coupling constant as a function of the core shift.

Fig. 11.
Fig. 11.

Transmission spectrum of an LPFG: experimental (solid line) and simulation (dashed line).

Fig. 12.
Fig. 12.

Normalized coupling constant for the 4-th cladding mode of LPFGs written at two positions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ D = K ( N t 0 F 0 ) = G ( N ) .
log F = 12.4 37192 T ,

Metrics