Abstract

Real time closed loop control of plasma assisted semiconductor manufacturing processes has received significant attention in recent years. Therefore we have developed and tested a customized optical sensor based on buffer gas (argon) actinometry which has been used to determine relative densities of atomic and molecular oxygen in an Ar/O2 radio–frequency ICP chamber. The operation and accuracy of our optical sensor compared favorably with a high resolution commercial spectrometer but at lower cost and exhibited improved actinometric performance over a low resolution commercial spectrometer. Furthermore, threshold tests have been performed on the validity of buffer gas based actinometry in Ar/O2 ICP plasmas where Ar is no longer a trace gas through Xe actinometry. The plasma conditions for which this customized optical sensor can be used for closed loop control have been established.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
    [Crossref]
  2. T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
    [Crossref]
  3. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
    [Crossref]
  4. J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
    [Crossref]
  5. B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
    [Crossref]
  6. J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
    [Crossref]
  7. N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
    [Crossref]
  8. J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 513134–3136 (1980).
    [Crossref]
  9. S. De Benedictis, A. Gicquel, and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi and A. Kinbara), Tokyo (1987).
  10. P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
    [Crossref]
  11. T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
    [Crossref]
  12. NIST - Atomic Spectra Data Base Lines (wavelength order) 2007 - http://physics.nist.gov
  13. M. Lieberman and A Lichtenberg, “Principles of Plasma Discharges and Materials Processing” (New York: Wiley), (1994).
  14. S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
    [Crossref]
  15. A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
    [Crossref]
  16. R. W. B. Pearse and A. G. Gaydon, “The identification of molecular spectra”, (Chapman & Hall LTD., London) (1941).
  17. C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
    [Crossref]
  18. R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
    [Crossref]
  19. J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
    [Crossref]
  20. V. Milosavljević and A R Ellingboe, “Quantum efficiency of Spectrometers”, PRL Internal report (Dublin: Dublin City University) (2004).
  21. A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
    [Crossref]
  22. H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
    [Crossref]

2006 (1)

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

2005 (2)

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
[Crossref]

2004 (2)

P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
[Crossref]

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

2001 (1)

C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
[Crossref]

2000 (2)

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

1999 (1)

J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
[Crossref]

1995 (1)

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

1994 (2)

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

1991 (1)

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

1990 (1)

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

1987 (1)

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

1986 (1)

R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
[Crossref]

1980 (1)

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 513134–3136 (1980).
[Crossref]

Allen, K. D.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

Amorim, J.

J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
[Crossref]

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

Amouroux, J.

C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
[Crossref]

Baravian, G.

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

Bessler, W. G.

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Booth, J. P.

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

Cavadias, S.

C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
[Crossref]

Cernogora, G.

P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
[Crossref]

Chen, M.

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 513134–3136 (1980).
[Crossref]

Chéreau, D.

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

Coburn, J. W.

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 513134–3136 (1980).
[Crossref]

Corata, E. J.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

Cramarossa, F.

S. De Benedictis, A. Gicquel, and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi and A. Kinbara), Tokyo (1987).

Czerwiec, T.

T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
[Crossref]

De Benedictis, S.

S. De Benedictis, A. Gicquel, and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi and A. Kinbara), Tokyo (1987).

Döbele, H. F.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Ellingboe, A R

V. Milosavljević and A R Ellingboe, “Quantum efficiency of Spectrometers”, PRL Internal report (Dublin: Dublin City University) (2004).

Ferreira, N. G.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

Fujimura, S.

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

Gaydon, A. G.

R. W. B. Pearse and A. G. Gaydon, “The identification of molecular spectra”, (Chapman & Hall LTD., London) (1941).

Gicquel, A.

S. De Benedictis, A. Gicquel, and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi and A. Kinbara), Tokyo (1987).

Goehlich, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Granier, A.

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

Graves, D. B.

T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
[Crossref]

Greer, F.

T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
[Crossref]

Guyon, C.

C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
[Crossref]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Henda, K.

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

Hershkowitz, N.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

Jeffries, J. B.

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Jolly, J.

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

Joubert, O.

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

Katsch, H. M.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Kawetzki, T.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

Lee, D.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

Lee, T.

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Leitea, N. F.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

Leprince, P.

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

Lichtenberg, A

M. Lieberman and A Lichtenberg, “Principles of Plasma Discharges and Materials Processing” (New York: Wiley), (1994).

Lieberman, M.

M. Lieberman and A Lichtenberg, “Principles of Plasma Discharges and Materials Processing” (New York: Wiley), (1994).

Macko, P.

P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
[Crossref]

Miller, T. A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Milosavljevic, V.

V. Milosavljević and A R Ellingboe, “Quantum efficiency of Spectrometers”, PRL Internal report (Dublin: Dublin City University) (2004).

Nakamura, M.

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

Oksuz, L.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

Patel, M.

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Pearce, K.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Pearse, R. W. B.

R. W. B. Pearse and A. G. Gaydon, “The identification of molecular spectra”, (Chapman & Hall LTD., London) (1941).

Pelletier, J.

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

Preppernau, B. L.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Quandt, E.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Richards, A. D.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

Sadeghi, N. J.

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

Saeneer, K. L.

R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
[Crossref]

Safari, R.

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

Sawin, H. H.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

Schulz, C.

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

Selwyn, G. S.

R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
[Crossref]

Severn, G.

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

Shinagawa, K.

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

Souza, C. F.

J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
[Crossref]

Tewes, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

Thomaz, J. C.

J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
[Crossref]

Thompson, B. E.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

Touzeau, M.

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

Trava-Airoldia, V. J.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

Tserepi, A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Veis, P.

P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
[Crossref]

Walkup, R. E.

R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
[Crossref]

Wurzberg, E.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Yano, H.

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

Appl. Phys. B: Lasers & Optics (2)

T. Lee, W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries, and R. K. Hanson, “UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame”, Appl. Phys. B: Lasers & Optics 79/4427–430 (2004).
[Crossref]

W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements”, Appl. Phys. B: Lasers & Optics 80/2,147–150 (2005).
[Crossref]

Chem Phys. (1)

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg, and T. A. Miller, “Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence”, Chem Phys. 196, 371–381 (1995).
[Crossref]

Diamond and Related Materials (1)

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia, and N. F. Leitea, “OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures”, Diamond and Related Materials 9/3–6368–372 (2000).
[Crossref]

J. Appl. Phys. (6)

J. W. Coburn and M. Chen, “Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density”, J. Appl. Phys. 513134–3136 (1980).
[Crossref]

J. Amorim, G. Baravian, J. Jolly, and M. Touzeau, “Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges”, J. Appl. Phys. 76/31487–1493 (1994).
[Crossref]

A. Granier, D. Chéreau, K. Henda, R. Safari, and P. Leprince, “Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2–N2 mixtures”, J. Appl. Phys. 75/1104–114 (1994).
[Crossref]

J. P. Booth, O. Joubert, J. Pelletier, and N. J. Sadeghi, “Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm”, J. Appl. Phys. 69618–626 (1991).
[Crossref]

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, “Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry”, J. Appl. Phys.,  62/3792–798 (1987).
[Crossref]

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, “Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy”, J. Appl. Phys. 88/116232–6238 (2000).
[Crossref]

J. Chem. Phys. (1)

R. E. Walkup, K. L. Saeneer, and G. S. Selwyn, “Studies of atomic oxygen in O2+CF4 rf discharges by two- photon laser-induced fluorescence and optical emission spectroscopy”, J. Chem. Phys. 842668–2674 (1986).
[Crossref]

J. Phys. D: Appl. Phys. (3)

T. Czerwiec, F. Greer, and D. B. Graves, “Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry”, J. Phys. D: Appl. Phys. 38/244278–4289 (2005).
[Crossref]

J. C. Thomaz, J. Amorim, and C. F. Souza, “Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges”, J. Phys. D: Appl. Phys. 323208–3214 (1999).
[Crossref]

D. Lee, G. Severn, L. Oksuz, and N. Hershkowitz, “Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma”, J. Phys. D: Appl. Phys. 395230–5235 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Fujimura, K. Shinagawa, M. Nakamura, and H. Yano, “Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing”, Jpn. J. Appl. Phys. 29/102165–2170 (1990).
[Crossref]

Plasma Sources Sci. Technol. (1)

P. Macko, P. Veis, and G. Cernogora, “Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique”, Plasma Sources Sci. Technol. 13251–262 (2004).
[Crossref]

Surf. Coat. Technol. (1)

C. Guyon, S. Cavadias, and J. Amouroux, “Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface”, Surf. Coat. Technol. 142–144959–963 (2001).
[Crossref]

Other (5)

V. Milosavljević and A R Ellingboe, “Quantum efficiency of Spectrometers”, PRL Internal report (Dublin: Dublin City University) (2004).

NIST - Atomic Spectra Data Base Lines (wavelength order) 2007 - http://physics.nist.gov

M. Lieberman and A Lichtenberg, “Principles of Plasma Discharges and Materials Processing” (New York: Wiley), (1994).

R. W. B. Pearse and A. G. Gaydon, “The identification of molecular spectra”, (Chapman & Hall LTD., London) (1941).

S. De Benedictis, A. Gicquel, and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi and A. Kinbara), Tokyo (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the BARIS chamber and associated diagnostics.

Fig. 2.
Fig. 2.

Schematic diagram of the customized optical device: BS - Beam splitter, M - mirror, OF# - Optical filter (central wavelength), L - Lens (focal distance), B - Batteries, PD -Photodiode

Fig. 3.
Fig. 3.

O I spectral lines recorded by the PGS–2 spectrometer (top left) and by the USB2000 spectrometer (top right). Ar I spectral lines recorded by the PGS–2 spectrometer (bottom left) and by the USB2000 spectrometer (bottom right).

Fig. 4.
Fig. 4.

Comparison of the low resolution spectrometer (left) and customized optical device (right) with the high resolution spectrometer. Full squares represent the intensity ratio of the argon line. Open circles represent the intensity ratio for the oxygen line. The dashed lines represent the mean value of line intensity ratio in each case. The error bar is indicative of the reproducibility of measured values under the same experimental conditions.

Fig. 5.
Fig. 5.

Optical emission spectrum from an argon–oxygen plasma (bottom). Optical emission spectrum from an argon–oxygen plasma with xenon as a trace gas (top). The relevant actinometry lines are indicated for clarity in each panel. The summed intensity of the Ar/O2 and Ar/O2/Xe spectra differed by 15%.

Fig. 6.
Fig. 6.

Actinometry results by argon (full lines) and by xenon (broken line). OIAr and O2Ar represent densities of atomic oxygen and molecular oxygen, respectively, as determined by argon actinometry. OIXe and O2Xe represent densities of atomic oxygen and molecular oxygen, respectively, as determined by xenon actinometry. The error bars are indicative of the reproducibility of the data.

Metrics