Abstract

Real time closed loop control of plasma assisted semiconductor manufacturing processes has received significant attention in recent years. Therefore we have developed and tested a customized optical sensor based on buffer gas (argon) actinometry which has been used to determine relative densities of atomic and molecular oxygen in an Ar/O2 radio–frequency ICP chamber. The operation and accuracy of our optical sensor compared favorably with a high resolution commercial spectrometer but at lower cost and exhibited improved actinometric performance over a low resolution commercial spectrometer. Furthermore, threshold tests have been performed on the validity of buffer gas based actinometry in Ar/O2 ICP plasmas where Ar is no longer a trace gas through Xe actinometry. The plasma conditions for which this customized optical sensor can be used for closed loop control have been established.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
    [CrossRef]
  2. T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
    [CrossRef]
  3. W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
    [CrossRef]
  4. J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
    [CrossRef]
  5. B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
    [CrossRef]
  6. J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
    [CrossRef]
  7. N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
    [CrossRef]
  8. J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980).
    [CrossRef]
  9. S. De Benedictis, A. Gicquel and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi, A. Kinbara), Tokyo (1987).
  10. P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
    [CrossRef]
  11. T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
    [CrossRef]
  12. NIST - Atomic Spectra Data Base Lines (wavelength order) 2007 - http://physics.nist.gov
  13. M. Lieberman and A Lichtenberg, "Principles of Plasma Discharges and Materials Processing" (New York: Wiley), (1994).
  14. S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
    [CrossRef]
  15. A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
    [CrossRef]
  16. R. W. B. Pearse and A. G. Gaydon, "The identification of molecular spectra", (Chapman & Hall LTD., London) (1941).
  17. C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
    [CrossRef]
  18. R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
    [CrossRef]
  19. J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
    [CrossRef]
  20. V. Milosavljevic and A R Ellingboe, "Quantum efficiency of Spectrometers", PRL Internal report (Dublin: Dublin City University) (2004).
  21. A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
    [CrossRef]
  22. H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
    [CrossRef]

2006 (1)

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

2005 (2)

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
[CrossRef]

2004 (2)

P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
[CrossRef]

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

2001 (1)

C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
[CrossRef]

2000 (2)

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

1999 (1)

J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
[CrossRef]

1995 (1)

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

1994 (2)

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

1991 (1)

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

1990 (1)

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

1987 (1)

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

1986 (1)

R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
[CrossRef]

1980 (1)

J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980).
[CrossRef]

Allen, K. D.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

Amorim, J.

J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
[CrossRef]

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

Amouroux, J.

C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
[CrossRef]

Baravian, G.

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

Bessler, W. G.

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Booth, J. P.

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

Cavadias, S.

C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
[CrossRef]

Cernogora, G.

P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
[CrossRef]

Ch’ereau, D.

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

Chen, M.

J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980).
[CrossRef]

Coburn, J. W.

J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980).
[CrossRef]

Corata, E. J.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

Czerwiec, T.

T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
[CrossRef]

Döbele, H. F.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Ferreira, N. G.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

Fujimura, S.

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

Goehlich, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Granier, A.

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

Graves, D. B.

T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
[CrossRef]

Greer, F.

T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
[CrossRef]

Guyon, C.

C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
[CrossRef]

Hanson, R. K.

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Henda, K.

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

Hershkowitz, N.

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

Jeffries, J. B.

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Jolly, J.

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

Joubert, O.

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

Katsch, H. M.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Kawetzki, T.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Koban, W.

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

Lee, D.

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

Lee, T.

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Leitea, N. F.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

Leprince, P.

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

Macko, P.

P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
[CrossRef]

Miller, T. A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Nakamura, M.

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

Oksuz, L.

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

Patel, M.

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Pearce, K.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Pelletier, J.

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

Preppernau, B. L.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Quandt, E.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Richards, A. D.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

Sadeghi, N. J.

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

Saeneer, K. L.

R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
[CrossRef]

Safari, R.

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

Sawin, H. H.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

Schulz, C.

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

Selwyn, G. S.

R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
[CrossRef]

Severn, G.

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

Shinagawa, K.

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

Souza, C. F.

J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
[CrossRef]

Tewes, A.

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

Thomaz, J. C.

J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
[CrossRef]

Thompson, B. E.

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

Touzeau, M.

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

Trava-Airoldia, V. J.

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

Tserepi, A.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Veis, P.

P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
[CrossRef]

Walkup, R. E.

R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
[CrossRef]

Wurzberg, E.

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Yano, H.

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

Appl. Phys. B: Lasers & Optics (2)

T. Lee,W. G. Bessler, C. Schulz, M. Patel, J. B. Jeffries and R. K. Hanson, "UV planar laser induced fluorescence imaging of hot carbon dioxide in a high-pressure flame", Appl. Phys. B: Lasers & Optics 79/4427-430 (2004).
[CrossRef]

W. Koban, J. D. Koch, R. K. Hanson and C. Schulz, "Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements", Appl. Phys. B: Lasers & Optics 80/2,147-150 (2005).
[CrossRef]

Chem Phys. (1)

B. L. Preppernau, K. Pearce, A. Tserepi, E. Wurzberg and T. A. Miller, "Angular momentum state mixing and quenching of n=3 atomic hydrogen fluorescence", Chem Phys. 196,371-381 (1995).
[CrossRef]

Diamond and Related Materials (1)

N. G. Ferreira, E. J. Corata, V. J. Trava-Airoldia and N. F. Leitea, "OES study of the plasma during CVD diamond growth using CCl4/H2/O2 mixtures", Diamond and Related Materials 9/3-6368-372 (2000).
[CrossRef]

J. Appl. Phys. (6)

J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density", J. Appl. Phys. 513134-3136 (1980).
[CrossRef]

J. Amorim, G. Baravian, J. Jolly and M. Touzeau, "Two-photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges", J. Appl. Phys. 76/31487-1493 (1994).
[CrossRef]

A. Granier, D. Ch’ereau, K. Henda, R. Safari and P. Leprince, "Validity of actinometry to monitor oxygen atom concentration in microwave discharges created by surface wave in O2-N2 mixtures", J. Appl. Phys. 75/1104-114 (1994).
[CrossRef]

J. P. Booth, O. Joubert, J. Pelletier and N. J. Sadeghi, "Oxygen atom actinometry reinvestigated: Comparison with absolute measurements by resonance absorption at 130 nm", J. Appl. Phys. 69618-626 (1991).
[CrossRef]

A. D. Richards, B. E. Thompson, K. D. Allen, and H. H. Sawin, "Atomic chlorine concentration measurements in a plasma etching reactor. I. A comparison of infrared absorption and optical emission actinometry", J. Appl. Phys.,  62/3792-798 (1987).
[CrossRef]

H. M. Katsch, A. Tewes, E. Quandt, A. Goehlich, T. Kawetzki, and H. F. Döbele, "Detection of atomic oxygen: Improvement of actinometry and comparison with laser spectroscopy", J. Appl. Phys. 88/116232-6238 (2000).
[CrossRef]

J. Chem. Phys. (1)

R. E. Walkup, K. L. Saeneer and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy", J. Chem. Phys. 842668-2674 (1986).
[CrossRef]

J. Phys. D: Appl. Phys. (3)

T. Czerwiec, F. Greer and D. B. Graves, "Nitrogen dissociation in a low pressure cylindrical ICP discharge studied by actinometry and mass spectrometry", J. Phys. D: Appl. Phys. 38/244278-4289 (2005).
[CrossRef]

J. C. Thomaz, J. Amorim and C. F. Souza, "Validity of actinometry to measure N and H atom concentration in N2-H2 direct current glow discharges", J. Phys. D: Appl. Phys. 323208-3214 (1999).
[CrossRef]

D. Lee, G. Severn, L. Oksuz and N. Hershkowitz, "Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma", J. Phys. D: Appl. Phys. 395230-5235 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Fujimura, K. Shinagawa, M. Nakamura and H. Yano, "Additive Nitrogen Effects on Oxygen Plasma Downstream Ashing", Jpn. J. Appl. Phys. 29/102165-2170 (1990).
[CrossRef]

Plasma Sources Sci. Technol. (1)

P. Macko, P. Veis and G. Cernogora, "Study of oxygen atom recombination on a Pyrex surface at different wall temperatures by means of time-resolved actinometry in a double pulse discharge technique", Plasma Sources Sci. Technol. 13251-262 (2004).
[CrossRef]

Surf. Coat. Technol. (1)

C. Guyon, S. Cavadias and J. Amouroux, "Heat and mass transfer phenomenon from an oxygen plasma to a semiconductor surface", Surf. Coat. Technol. 142-144959-963 (2001).
[CrossRef]

Other (5)

V. Milosavljevic and A R Ellingboe, "Quantum efficiency of Spectrometers", PRL Internal report (Dublin: Dublin City University) (2004).

NIST - Atomic Spectra Data Base Lines (wavelength order) 2007 - http://physics.nist.gov

M. Lieberman and A Lichtenberg, "Principles of Plasma Discharges and Materials Processing" (New York: Wiley), (1994).

R. W. B. Pearse and A. G. Gaydon, "The identification of molecular spectra", (Chapman & Hall LTD., London) (1941).

S. De Benedictis, A. Gicquel and F. Cramarossa, Proc. 8th Int. Symp. Plasma Chem. ISPC’87, (Ed. K. Akashi, A. Kinbara), Tokyo (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the BARIS chamber and associated diagnostics.

Fig. 2.
Fig. 2.

Schematic diagram of the customized optical device: BS - Beam splitter, M - mirror, OF# - Optical filter (central wavelength), L - Lens (focal distance), B - Batteries, PD -Photodiode

Fig. 3.
Fig. 3.

O I spectral lines recorded by the PGS–2 spectrometer (top left) and by the USB2000 spectrometer (top right). Ar I spectral lines recorded by the PGS–2 spectrometer (bottom left) and by the USB2000 spectrometer (bottom right).

Fig. 4.
Fig. 4.

Comparison of the low resolution spectrometer (left) and customized optical device (right) with the high resolution spectrometer. Full squares represent the intensity ratio of the argon line. Open circles represent the intensity ratio for the oxygen line. The dashed lines represent the mean value of line intensity ratio in each case. The error bar is indicative of the reproducibility of measured values under the same experimental conditions.

Fig. 5.
Fig. 5.

Optical emission spectrum from an argon–oxygen plasma (bottom). Optical emission spectrum from an argon–oxygen plasma with xenon as a trace gas (top). The relevant actinometry lines are indicated for clarity in each panel. The summed intensity of the Ar/O2 and Ar/O2/Xe spectra differed by 15%.

Fig. 6.
Fig. 6.

Actinometry results by argon (full lines) and by xenon (broken line). OIAr and O2Ar represent densities of atomic oxygen and molecular oxygen, respectively, as determined by argon actinometry. OIXe and O2Xe represent densities of atomic oxygen and molecular oxygen, respectively, as determined by xenon actinometry. The error bars are indicative of the reproducibility of the data.

Metrics