Abstract

We measure second-harmonic generation from arrays of sub-wavelength apertures in transmission using fundamental input at 800 nm. Lattice arrangements include disordered, Penrose (quasi-periodic or aperiodic), and square (periodic). Strong angular dependence of SHG is observed, with maxima located at angular positions that roughly correspond to incidence angles of extraordinary optical transmission (EOT) for the fundamental. In addition, even at incidence normal to the sample, strong secondary maxima are observed at off-normal scattering angles for the arrangements with higher degree of order. Breaking the inversion symmetry of the aperture allows second harmonic peaks at normal incidence and detection. These measurements help to resolve the role that symmetry plays in second-harmonic generation from arrays of apertures.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
    [CrossRef]
  2. L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
    [CrossRef] [PubMed]
  3. Y. Liu and S. Blair "Fluorescence enhancement from an array of sub-wavelength metal apertures," Opt. Lett. 28,507-509 (2003).
    [CrossRef] [PubMed]
  4. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi "Enhanced nonlinear optical conversion using periodically nanostructured metal films," Opt. Lett. 28,423-425 (2003).
    [CrossRef] [PubMed]
  5. M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
    [CrossRef]
  6. W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
    [CrossRef]
  7. A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
    [CrossRef]
  8. A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
    [CrossRef]
  9. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
    [CrossRef] [PubMed]
  10. N. Rakov, F. E. Ramos, and M. Xiao "Strong second-harmonic generation from a thin silver film with randomly distributed small holes," J. Phys.: Cond. Matter 15,L349-L352 (2003).
    [CrossRef]
  11. M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
    [CrossRef]
  12. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
    [CrossRef] [PubMed]
  13. F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
    [CrossRef]
  14. J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno "Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes," arXiv:cond-mat/0606121v2 (2007).
  15. V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
    [CrossRef]
  16. F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
    [CrossRef]
  17. M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
    [CrossRef]
  18. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14,10410-10425 (2006).
    [CrossRef] [PubMed]
  19. N. I. Zheludev and V. I. Emel’yanov "Phase matched second harmonic generation from nanostructured metallic surfaces," J. Opt. A: Pure and Appl. Opt. 6,26-28 (2004).
    [CrossRef]
  20. K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
    [CrossRef]
  21. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
    [CrossRef] [PubMed]
  22. B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
    [CrossRef]
  23. A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
    [CrossRef]

2007 (5)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
[CrossRef]

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

2006 (7)

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
[CrossRef]

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
[CrossRef]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang "Characterization of light collection through a subwavelength aperture from a point source," Opt. Express 14,10410-10425 (2006).
[CrossRef] [PubMed]

2005 (2)

M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
[CrossRef]

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

2004 (1)

N. I. Zheludev and V. I. Emel’yanov "Phase matched second harmonic generation from nanostructured metallic surfaces," J. Opt. A: Pure and Appl. Opt. 6,26-28 (2004).
[CrossRef]

2003 (3)

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

2000 (1)

V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
[CrossRef]

1999 (1)

B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Abdenour, A.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

Airola, M.

M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
[CrossRef]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Blair, S.

F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
[CrossRef]

M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
[CrossRef]

Y. Liu and S. Blair "Fluorescence enhancement from an array of sub-wavelength metal apertures," Opt. Lett. 28,507-509 (2003).
[CrossRef] [PubMed]

Brudny, V. L.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
[CrossRef]

Brueck, S. R. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Bunton, P. H.

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Cheng, B.-Y.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Cui, X.

Ebbesen, T. W.

F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Emel’yanov, V. I.

N. I. Zheludev and V. I. Emel’yanov "Phase matched second harmonic generation from nanostructured metallic surfaces," J. Opt. A: Pure and Appl. Opt. 6,26-28 (2004).
[CrossRef]

Enoch, S.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Fan, W.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Fan, Z. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

Genet, C.

F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Gordon, R.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
[CrossRef]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

Haglund, R. F.

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

Harmsen, R. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Heng, X.

Hicks, E.M.

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Ishi, T.

Jin, A.-Z.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Knapp, D. W.

Krishna, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Kuipers, L.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
[CrossRef]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
[CrossRef]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
[CrossRef]

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Li, Z.-Y.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Linke, R. A.

Liu, K.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Liu, Y.

F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
[CrossRef]

M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
[CrossRef]

Y. Liu and S. Blair "Fluorescence enhancement from an array of sub-wavelength metal apertures," Opt. Lett. 28,507-509 (2003).
[CrossRef] [PubMed]

Lopez, R.

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

Luo, S. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Mahdavi, F.

F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
[CrossRef]

Malloy, K. J.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

McDowell, E. J.

McMahon, M. D.

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

Mendoza, B. S.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
[CrossRef]

Mochan, W. L.

V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
[CrossRef]

Moran, A.M.

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi "Enhanced nonlinear optical conversion using periodically nanostructured metal films," Opt. Lett. 28,423-425 (2003).
[CrossRef] [PubMed]

Ohashi, K.

Osgood, R. M.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Panoiu, N. C.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Prangsma, J. C.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Przybilla, F.

F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
[CrossRef]

Psaltis, D.

Quan, M. Y.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Rakov, N.

N. Rakov, F. E. Ramos, and M. Xiao "Strong second-harmonic generation from a thin silver film with randomly distributed small holes," J. Phys.: Cond. Matter 15,L349-L352 (2003).
[CrossRef]

Ramos, F. E.

N. Rakov, F. E. Ramos, and M. Xiao "Strong second-harmonic generation from a thin silver film with randomly distributed small holes," J. Phys.: Cond. Matter 15,L349-L352 (2003).
[CrossRef]

Ray, E. A.

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

Sandtke, M.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Segerink, F. B.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Spears, K. G.

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

Sun, M.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Sung, J.

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Tian, J.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

van Duyne, R. P.

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

van Nieuwstadt, J. A. H.

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Wu, J.

Xia, Y. X.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Xiao, M.

N. Rakov, F. E. Ramos, and M. Xiao "Strong second-harmonic generation from a thin silver film with randomly distributed small holes," J. Phys.: Cond. Matter 15,L349-L352 (2003).
[CrossRef]

Yang, C.

Yang, H.-F.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Yaqoob, Z.

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

Zhan, L.

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Zhang, D.-Z.

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

Zhang, S.

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev and V. I. Emel’yanov "Phase matched second harmonic generation from nanostructured metallic surfaces," J. Opt. A: Pure and Appl. Opt. 6,26-28 (2004).
[CrossRef]

Appl. Phys. B (1)

B. Lamprecht, A. Leitner, and F. R. Aussenegg "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68,419-423 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film," Appl. Phys. Lett. 88,261104 (2006).
[CrossRef]

F. Przybilla, C. Genet, and T. W. Ebbesen "Enhanced transmission through Penrose subwavelength hole arrays," Appl. Phys. Lett. 89,121115 (2006).
[CrossRef]

Chinese Phys. Lett. (1)

M. Sun, J. Tian, Z.-Y. Li, B.-Y. Cheng, D.-Z. Zhang, A.-Z. Jin, and H.-F. Yang "The role of periodicity in enhanced transmission through subwavelength hole arrays," Chinese Phys. Lett. 23,486-488 (2006).
[CrossRef]

J. Opt. A: Pure and Appl. Opt. (2)

M. Airola, Y. Liu, and S. Blair "Second-harmonic generation from an array of sub-wavelength metal apertures," J. Opt. A: Pure and Appl. Opt. 7,S118-S123 (2005).
[CrossRef]

N. I. Zheludev and V. I. Emel’yanov "Phase matched second harmonic generation from nanostructured metallic surfaces," J. Opt. A: Pure and Appl. Opt. 6,26-28 (2004).
[CrossRef]

J. Phys. Chem. B (1)

A.M. Moran, J. Sung, E.M. Hicks, R. P. van Duyne, and K. G. Spears "Second harmonic excitation spectroscopy of silver nanoparticle arrays," J. Phys. Chem. B 109,4501-4506 (2005).
[CrossRef]

J. Phys.: Cond. Matter (1)

N. Rakov, F. E. Ramos, and M. Xiao "Strong second-harmonic generation from a thin silver film with randomly distributed small holes," J. Phys.: Cond. Matter 15,L349-L352 (2003).
[CrossRef]

Nano Lett. (2)

W. Fan, S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, Jr., K. J. Malloy, and S. R. J. Brueck "Second-harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6,1027-1030 (2006).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen "Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers," Nano Lett. 7,1251-1255 (2007).
[CrossRef] [PubMed]

Nature (London) (2)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny "Transmission resonances through aperiodic arrays of subwavelength apertures," Nature (London) 446,517-521 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391,667-669 (1998).
[CrossRef]

Opt. Commun. (1)

K. Liu, L. Zhan, Z. Y. Fan, M. Y. Quan, S. Y. Luo, and Y. X. Xia "Enhancement of second-harmonic generation with phase-matching on periodic sub-wavelength structured metal film," Opt. Commun. 276,8-13 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

M. D. McMahon, R. Lopez, R. F. Haglund, Jr., E. A. Ray, and P. H. Bunton "Second-harmonic generation from an arrays of symmetric gold nanoparticles," Phys. Rev. B 73,041401 (2006).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochan "Second-harmonic generation from spherical particles," Phys. Rev. B 62,11152-11162 (2000).
[CrossRef]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon "Apex-enhanced second harmonic generation by using double-hole arrays in a gold film," Phys. Rev. B 75,045423 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers "Strong modification of the nonlinear optical response of metallic subwavelength hole arrays," Phys. Rev. Lett. 97,146102 (2006).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86,1110-1113 (2001).
[CrossRef] [PubMed]

Plasmonics (1)

F. Mahdavi, Y. Liu, and S. Blair "Modeling fluorescence enhancement from metallic nanocavities," Plasmonics 2, 129-141 (2007).
[CrossRef]

Other (1)

J. Bravo-Abad, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, and L. Martin-Moreno "Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes," arXiv:cond-mat/0606121v2 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Experimental setup for second harmonic generation measurements. The output of the Ti:Sapphire laser passes through a neutral density filter and a spectral longpass filter (690 nm) before being focused onto the sample with a 20 μm spot size by a 10 cm focal length lens; all patterned areas were larger than the spot size (the FIB sample is 25 μm by 25 μm and the e-beam samples are 80 μm by 80 μm). Emission from the sample passes through a collection lens of 10 cm focal length, a spectral short-pass filter (450 nm cutoff), a band-pass filter (400 nm center, 40 nm passband), and a 2 mm iris, and is detected with a PMT. As illustrated, θ is positive and γ is negative.

Fig. 2.
Fig. 2.

SEM image of disordered array of round apertures. The apertures are roughly 235 nm by 241 nm in size. The fill fraction is about 4.6% (as calculated by image thresholding and plotting a histogram of the result). Plot of fundamental transmission (dashed linestyle) and zeroth-order SH signal (solid linestyle) as a function of incidence angle (right). Both curves are normalized to their maximum values.

Fig. 3.
Fig. 3.

Second-harmonic output from disordered arrangement of circular apertures as a function of detection angle and incidence angle of the fundamental beam. Second-harmonic intensity is normalized to its’ maximum value.

Fig. 4.
Fig. 4.

Calculated intensity distributions 5 nm below the entrance and in cross section of a 250 nm diameter aperture in 100 nm thick gold under normal illumination at 800 nm (0° plots, top). A 5 nm chromium layer is placed between the gold and substrate, but the diameter is 260 nm assuming 5 nm overetching beneath the gold layer. Cross-section intensity profiles are also shown for 30° and 60° angles of incidence. Aperture geometry illustrated by the semi-transparent overlays.

Fig. 5.
Fig. 5.

SEM image of square lattice of round apertures. Apertures are roughly 240 nm by 285 nm in size, with period 910 nm. The fill fraction is about 6.7%. Plot of fundamental transmission (dashed linestyle) and zeroth-order SH signal (solid linestyle) as a function of incidence angle (right). Both curves are normalized to their maximum values.

Fig. 6.
Fig. 6.

Second-harmonic output from square arrangement of circular apertures as a function of detection angle and incidence angle of the fundamental beam. The SH signal is normalized to the maximum SH obtained from the disordered lattice.

Fig. 7.
Fig. 7.

Image of asymmetric aperture shape (left). Angles between the three branches are intended to be 90°, 120°, and 150°, clockwise from top. The square array of asymmetric apertures has a pitch of 880 nm and fill fraction of about 3%. Plot of fundamental transmission (dashed linestyle) and zeroth-order SH signal (solid linestyle) as a function of incidence angle (right). Both curves are normalized to their maximum values.

Fig. 8.
Fig. 8.

Calculated intensity distributions 5 nm below the entrance in an asymmetric aperture in 100 nm thick gold under normal illumination at 800 nm. Periodic boundary conditions are used in the calculations to mimic the square lattice. A 5 nm chromium layer is placed between the gold and substrate, overetched beneath the gold layer by 5 nm.

Fig. 9.
Fig. 9.

Second-harmonic output from square arrangement of circular apertures as a function of detection angle and incidence angle of the fundamental beam. The SH signal is normalized to the maximum SH obtained from the disordered lattice.

Fig. 10.
Fig. 10.

Image of Penrose arrangement of round apertures (left). Apertures are roughly 354 nm by 340 nm in size. The fill fraction is about 13%. Calculated reciprocal space (right). The diameter of each peak is indicative of its’ magnitude. The red circles represent the spatial frequencies that are used in the fitting of diffraction orders in the experimental plots, which are fx = 0,1.35,1.65,2.65,2.95, and 4.25 1/μm.

Fig. 11.
Fig. 11.

Second-harmonic output from a Penrose arrangement of circular apertures as a function of detection angle and incidence angle of the fundamental beam. The SH signal is normalized to the maximum SH obtained from the disordered lattice.

Fig. 12.
Fig. 12.

Plot of fundamental transmission (dashed linestyle) and zeroth-order SH signal (solid linestyle) as a function of incidence angle for the Penrose arrangement of asymmetric apertures. Both curves are normalized to their maximum values.

Fig. 13.
Fig. 13.

Second-harmonic output from a Penrose arrangement of asymmetric apertures as a function of detection angle and incidence angle of the fundamental beam. The SH signal is normalized to the maximum SH obtained from the disordered lattice.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k t 2 ω = 2 k t ω + m K
sin γ = sin θ + m λ 2 Λ ,
[ comb ( x + d 2 Λ ) comb ( x d 2 Λ ) ] comb ( y Λ )
comb ( f x Λ ) sin ( π f x d ) comb ( f x Λ ) ,

Metrics