Abstract

An electromagnetic equivalent model for the phase conjugate mirror (PCM) is proposed in this paper. The model is based on the unique property of the isotropic left-handed material (LHM) - the ability of LHM to reverse the phase factors of propagative waves. We show that a PCM interface can be substituted with a LHM-RHM (right-handed material) interface and associated image sources and objects in the LHM. This equivalent model is fully equivalent in the treatment of propagative wave components. However, we note that the presence of evanescent wave components can lead to undesirably surface resonance at the LHM-RHM interface. This artefact can be kept well bounded by introducing a small refractive index mismatch between the LHM and RHM. We demonstrate the usefulness of this model by modelling several representative scenarios of light patterns interacting with a PCM. The simulations were performed by applying the equivalent model to a commercial finite element method (FEM) software. This equivalent model also points to the intriguing possibility of realizing some unique LHM based systems in the optical domain by substituting a PCM in place of a LHM-RHM interface.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ya. Zel’dovich, R. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).
  2. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983).
  3. R. Mittra and T. M. Habashy, “Theory of wave-front-distortion correction by phase conjugation,” J. Opt. Soc. Am. A 1, 1103–1109 (1984).
    [Crossref]
  4. S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
    [Crossref]
  5. P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
    [Crossref] [PubMed]
  6. J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
    [Crossref] [PubMed]
  7. B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004).
    [Crossref]
  8. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
    [Crossref] [PubMed]
  9. M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
    [Crossref]
  10. A. A. Zozulya and V. T. Tikhonchuk, “Investigation of stability of four-wave mixing in photorefractive media,” Phys. Lett. A 135, 447–452 (1989).
    [Crossref]
  11. P. C. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  12. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.
  13. D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Phys. Rev. Lett. 84, 4184 (2000).
    [Crossref] [PubMed]
  14. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
    [Crossref] [PubMed]
  15. J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
    [Crossref] [PubMed]
  16. M. Nieto-V and E. Wolf, “Phase conjugation and symmetries with wave fields in free space containing evanescent components,” J. Opt. Soc. Am. A 2, 1429–1434 (1985).
    [Crossref]
  17. J. A. Kong, Electromagnetic Wave Theory, (EMW Publishing, 2005) Chaps. 3, 5.
  18. N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10–13 (2002).
    [Crossref]
  19. Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).
  20. S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
    [Crossref]
  21. T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
    [Crossref]
  22. COMSOL Multiphysics 3.3 (2007), COMSOL INC. (http://www.comsol.com/)

2007 (1)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

2005 (3)

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

2004 (1)

B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004).
[Crossref]

2002 (4)

P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
[Crossref] [PubMed]

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[Crossref] [PubMed]

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10–13 (2002).
[Crossref]

2000 (2)

D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

1995 (1)

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[Crossref]

1989 (1)

A. A. Zozulya and V. T. Tikhonchuk, “Investigation of stability of four-wave mixing in photorefractive media,” Phys. Lett. A 135, 447–452 (1989).
[Crossref]

1985 (1)

1984 (2)

R. Mittra and T. M. Habashy, “Theory of wave-front-distortion correction by phase conjugation,” J. Opt. Soc. Am. A 1, 1103–1109 (1984).
[Crossref]

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[Crossref]

Chen, H.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Chen, K.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Cheng, Q.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

Cronin-Golomb, M.

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

Cui, T. J.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[Crossref] [PubMed]

Engheta, N.

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10–13 (2002).
[Crossref]

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.

Fink, M.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[Crossref] [PubMed]

Fischer, B.

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

Grzegorczyk, T. M.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

Habashy, T. M.

He, S.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

Henty, B. E.

B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004).
[Crossref]

Huangfu, J.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Jiang, Q.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

Jin, Y.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

Keller, O.

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[Crossref]

Kong, J. A.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

J. A. Kong, Electromagnetic Wave Theory, (EMW Publishing, 2005) Chaps. 3, 5.

Kroll, N.

D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Kuang, J.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

Lerosey, G.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

Li, Y.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Lu, W. B.

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

Mathey, P.

P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
[Crossref] [PubMed]

Mittra, R.

Nieto-V, M.

Odoulov, S.

P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
[Crossref] [PubMed]

Pacheco, J.

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

Pilipetskii, R. F.

B. Ya. Zel’dovich, R. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.

Ran, L.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Ruan, Z.

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

Rytz, D.

P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
[Crossref] [PubMed]

Shkunov, V. V.

B. Ya. Zel’dovich, R. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Smith, D. R.

D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

Smolyaninov, I. I.

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[Crossref]

Stancil, D. D.

B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004).
[Crossref]

Tikhonchuk, V. T.

A. A. Zozulya and V. T. Tikhonchuk, “Investigation of stability of four-wave mixing in photorefractive media,” Phys. Lett. A 135, 447–452 (1989).
[Crossref]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

White, J. O.

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

Wolf, E.

Wu, B. I.

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.

Yariv, A.

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

Yeh, P. C.

P. C. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Zel’dovich, B. Ya.

B. Ya. Zel’dovich, R. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

Zhang, X.

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

Zhang, Y.

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

Zozulya, A. A.

A. A. Zozulya and V. T. Tikhonchuk, “Investigation of stability of four-wave mixing in photorefractive media,” Phys. Lett. A 135, 447–452 (1989).
[Crossref]

IEEE Antennas Wireless Propag. Lett. (1)

N. Engheta, “An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability,” IEEE Antennas Wireless Propag. Lett. 1, 10–13 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Cronin-Golomb, J. O. White, A. Yariv, and B. Fischer, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12–30 (1984).
[Crossref]

IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials (1)

Y. Li, L. Ran, H. Chen, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, “Experimental realization of a one dimensional LHM-RHM Resonator,” IEEE Trans. Microwave Theory and Tech. special issue on Metamaterials 53, 1522–1526 (2005).

J. Opt. Soc. Am. A (2)

New J. Phys. (1)

S. He, Y. Jin, Z. Ruan, and J. Kuang, “On subwavelength and open resonators involving metamaterials of negative refraction index,” New J. Phys. 7, 210 (2005).
[Crossref]

Opt. Commun. (1)

S. I. Bozhevolnyi, O. Keller, and I. I. Smolyaninov, “Scattered light enhancement near a phase conjugating mirror,” Opt. Commun. 115, 115–120 (1995).
[Crossref]

Phys. Lett. A (1)

A. A. Zozulya and V. T. Tikhonchuk, “Investigation of stability of four-wave mixing in photorefractive media,” Phys. Lett. A 135, 447–452 (1989).
[Crossref]

Phys. Rev. B (1)

T. J. Cui, Q. Cheng, W. B. Lu, Q. Jiang, and J. A. Kong, “Localization of electromagnetic energy using a left-handed-medium slab,” Phys. Rev. B 71, 045114 (2005).
[Crossref]

Phys. Rev. Lett. (6)

D. R. Smith and N. Kroll, “Negative Refractive Index in Left-Handed Materials,” Phys. Rev. Lett. 84, 4184 (2000).
[Crossref] [PubMed]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966 (2000).
[Crossref] [PubMed]

J. Pacheco, T. M. Grzegorczyk, B. I. Wu, Y. Zhang, and J. A. Kong, “Power Propagation in Homogeneous Isotropic Frequency-Dispersive Left-Handed Media,” Phys. Rev. Lett. 89, 257401 (2002).
[Crossref] [PubMed]

P. Mathey, S. Odoulov, and D. Rytz, “Instability of single-frequency operation in semilinear photorefractive coherent oscillators,” Phys. Rev. Lett. 89, 053901 (2002).
[Crossref] [PubMed]

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[Crossref] [PubMed]

B. E. Henty and D. D. Stancil, “Multipath-enabled super-resolution for rf and microwave communication using phase-conjugate arrays,” Phys. Rev. Lett. 93, 243904 (2004).
[Crossref]

Science (1)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing Beyond the Diffraction Limit with Far-Field Time Reversal,” Science 315, 1120–1122 (2007).
[Crossref] [PubMed]

Other (6)

P. C. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” submitted to Nature Photonic.

B. Ya. Zel’dovich, R. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer, Berlin, 1985).

R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983).

COMSOL Multiphysics 3.3 (2007), COMSOL INC. (http://www.comsol.com/)

J. A. Kong, Electromagnetic Wave Theory, (EMW Publishing, 2005) Chaps. 3, 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). A scatterer is placed in front the PCM. (b). The proposed equivalent model for propagative wave components.

Fig. 2
Fig. 2

The reflection and transmission coefficient as a function of kx with L = 5λ, and different mismatch term δ s. (a) Magnitude of T, (b) Magnitude of R. kx /k 0 <1: propagative wave components, kx / k 0 >1: evanescent wave components.

Fig. 3.
Fig. 3.

The reflection and transmission coefficient as a function of kx with L = 10λ, and different mismatch term δ s. (a) Magnitude of T, (b) Magnitude of R. kx /k 0 <1: propagative wave components, kx / k 0 >1: evanescent wave components.

Fig. 4.
Fig. 4.

The E-field intensity distribution for the point source radiation scenario. (a) equivalent model of PCM, (b) conventional mirror and (c) perfect match layer boundary.

Fig. 5.
Fig. 5.

The E-field intensity distribution for the diffraction scenario. (a) equivalent model of PCM, (b) conventional mirror and (c) perfect match layer boundary.

Fig. 6.
Fig. 6.

The E-field intensity distribution for the scattering scenario. (a) equivalent model of PCM, (b) conventional mirror and (c) perfect match layer boundary.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Re ( E ) = 2 Re ( E 0 ) , Im ( E ) = 0
Re ( E ) = 2 Re ( E 1 e ) , Im ( E ) = 0
R = k z i μ 0 k z t μ i 0 k z i μ 0 + k z t μ i 0 e i k z i L , T = 2 k z i μ 0 k z i μ 0 + k z t μ i 0 e i k z i L
k z i = { + ε 0 μ 0 k 0 2 k x 2 ( ε 0 μ 0 k 0 2 k x 2 > 0 ) + i k x 2 ε 0 μ 0 k 0 2 ( ε 0 μ 0 k 0 2 k x 2 < 0 )
k z t = { ε i 0 μ i 0 k 0 2 k x 2 ( ε i 0 μ i 0 k 0 2 k x 2 > 0 ) + i k x 2 ε i 0 μ i 0 k 0 2 ( ε i 0 μ i 0 k 0 2 k x 2 < 0 )

Metrics