Abstract

Enhancement of band edge emission of ZnO nanorods up to a factor of 120 times has been observed in the composite consisting of ZnO nanorods and TiO2 nanoparticles, while the defect emission of ZnO nanorods is quenched to noise level. Through a detailed investigation, it is found that the large enhancement mainly arises from fluorescence resonance energy transfer between the band edge transition of ZnO nanorods and TiO2 nanoparticles. Our finding opens up new possibilities for the creation of highly efficient solid state emitters.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
    [CrossRef]
  2. L. S. -Mende and J. L. MacManus-Driscoll, ‘‘ZnO-nanostructures, defects, and devices," Mater. Today 10, 40-48 (2007).
    [CrossRef]
  3. N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
    [CrossRef]
  4. C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
    [CrossRef]
  5. Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
    [CrossRef]
  6. J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
    [CrossRef]
  7. Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
    [CrossRef]
  8. L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
    [CrossRef]
  9. C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
    [CrossRef]
  10. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
    [CrossRef]
  11. J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
    [CrossRef] [PubMed]
  12. C. Berney and G. Danuser, ‘‘FRET or No FRET: A quantitative comparison,’’ Biophys. J. 84, 3992-4010 (2003).
    [CrossRef] [PubMed]
  13. J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
    [CrossRef]
  14. H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
    [CrossRef]
  15. G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).
  16. T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
    [CrossRef]
  17. M. Grätzel, ‘‘Photoelectrochemical cells,’’ Nature 414, 338-344 (2001).
    [CrossRef] [PubMed]
  18. K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

2007

L. S. -Mende and J. L. MacManus-Driscoll, ‘‘ZnO-nanostructures, defects, and devices," Mater. Today 10, 40-48 (2007).
[CrossRef]

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

2006

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
[CrossRef] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

2005

C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).

2004

H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
[CrossRef]

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

2003

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

C. Berney and G. Danuser, ‘‘FRET or No FRET: A quantitative comparison,’’ Biophys. J. 84, 3992-4010 (2003).
[CrossRef] [PubMed]

J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
[CrossRef]

2001

M. Grätzel, ‘‘Photoelectrochemical cells,’’ Nature 414, 338-344 (2001).
[CrossRef] [PubMed]

1999

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

1978

T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
[CrossRef]

An, J.

C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Aydil, E. S.

J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
[CrossRef]

Baxter, J. B.

J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
[CrossRef]

Berney, C.

C. Berney and G. Danuser, ‘‘FRET or No FRET: A quantitative comparison,’’ Biophys. J. 84, 3992-4010 (2003).
[CrossRef] [PubMed]

Chen, H. P.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Chen, J.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Chen, S. Y.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Chen, T.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Chen, Y. F.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
[CrossRef] [PubMed]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Cheng, C. L.

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
[CrossRef] [PubMed]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

Choi, G. J.

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

Chou, Y. Y.

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

Danuser, G.

C. Berney and G. Danuser, ‘‘FRET or No FRET: A quantitative comparison,’’ Biophys. J. 84, 3992-4010 (2003).
[CrossRef] [PubMed]

Duan, L.

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

Fang, Z.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Fu, Z.

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
[CrossRef]

Grätzel, M.

M. Grätzel, ‘‘Photoelectrochemical cells,’’ Nature 414, 338-344 (2001).
[CrossRef] [PubMed]

Hng, H. H.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Hock, J.

G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).

Hsu, N. E.

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Huang, L. L.

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

Hung, W. K.

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
[CrossRef]

Kwon, Y. T.

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

Lai, C. W.

C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Lau, S. P.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Lee, H. W.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Lee, W. I.

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

Li, C.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Lian, Y.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Liao, H. C.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Lin, B.

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

Lin, C. C.

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

Lin, H. Y.

J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
[CrossRef] [PubMed]

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

Lin, J. M.

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, ‘‘Giant enhancement of band edge emission in ZnO and SnO nanocomposites,’’ Opt. Lett. 31, 3173-3175 (2006).
[CrossRef] [PubMed]

Mori, T.

H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
[CrossRef]

Nakajima, H.

H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
[CrossRef]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
[CrossRef]

Ong, H. C.

C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Shi, J.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Song, K. Y.

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

Stott, J.

G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).

Tay, B. K.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Wakefield, G.

G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).

Wang, X.

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

Wang, Y. G.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Watanabe, M.

H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
[CrossRef]

Wu, F.

J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
[CrossRef]

Xu, J.

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

Yu, S. F.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Zhang, W.

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

Zhang, X. H.

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

Zhang, Y.

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

Zhang, Z.

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

Zhong, S.

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

Appl. Phys. Lett.

J. B. Baxter, F. Wu, and E. S. Aydil, ‘‘Growth mechanism and characterization of zinc oxide hexagonal columns,’’ Appl. Phys. Lett. 83, 3797-3799 (2003).
[CrossRef]

C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’ Appl. Phys. Lett. 86, 183103 (2005).
[CrossRef]

L. Duan, W. Zhang, S. Zhong, and Z. Fu, ‘‘Enhancement of ultraviolet emissions from ZnO films by Ag doping,’’ Appl. Phys. Lett. 88, 232110 (2006).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, ‘‘Surface-plasmon-mediated emission from metal-capped ZnO thin films,’’ Appl. Phys. Lett. 86, 251105 (2005).
[CrossRef]

Biophys. J.

C. Berney and G. Danuser, ‘‘FRET or No FRET: A quantitative comparison,’’ Biophys. J. 84, 3992-4010 (2003).
[CrossRef] [PubMed]

Bull. Korean Chem. Soc.

K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, ‘‘Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper,’’ Bull. Korean Chem. Soc. 20, 957-960 (1999).

J. Appl. Phys.

H. Nakajima, T. Mori, and M. Watanabe, ‘‘Influence of platinum loading on photoluminescence of TiO2 powder,’’ J. Appl. Phys. 96, 925-927 (2004).
[CrossRef]

N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’ J. Appl. Phys. 96, 4671-4673 (2004).
[CrossRef]

J. Cryst. Growth

Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, and B. K. Tay, ‘‘Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing,’’ J. Cryst. Growth 259, 335-342 (2003).
[CrossRef]

J. Phys. Chem.

Y. Zhang, Z. Zhang, B. Lin, Z. Fu, and J. Xu, ‘‘Effect of Ag doping on the photoluminescence of ZnO films grown on Si substrate,’’ J. Phys. Chem. 109, 19200-19203 (2005).
[CrossRef]

J. Phys. Chem. C

J. Shi, J. Chen, Z. Fang, T. Chen, Y. Lian, X. Wang, and C. Li, ‘‘Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture,’’ J. Phys. Chem. C 111, 693-699 (2007).
[CrossRef]

J. Raman

T. Ohsaka, F. Izumi, and Y. Fujiki, ‘‘Raman spectrum of anatase, TiO2,’’ J. Raman Spec. 7, 321-324 (1978).
[CrossRef]

Mater. Today

L. S. -Mende and J. L. MacManus-Driscoll, ‘‘ZnO-nanostructures, defects, and devices," Mater. Today 10, 40-48 (2007).
[CrossRef]

Nanotechnology

J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, ‘‘Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,’’ Nanotechnology 17, 4391-4394 (2006).Q1
[CrossRef]

Nature

M. Grätzel, ‘‘Photoelectrochemical cells,’’ Nature 414, 338-344 (2001).
[CrossRef] [PubMed]

Opt. Exp.

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, ‘‘Enhancement of band gap emission stimulated by defect loss,’’ Opt. Exp. 14, 2372-2379 (2006).Q2
[CrossRef]

Opt. Lett.

SÖFW J.

G. Wakefield, J. Stott, and J. Hock, ‘‘Sunscreens and Cosmetics Containing Manganese Doped Titanium Oxide Nanoparticles,’’ SÖFW J. 131, 46-51 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron microscopy images of ZnO nanorods with (b) and without (a) TiO2 nanoparticles. (c) Photoluminescence and cathodoluminescence spectra of ZnO nanorods with and without TiO2 nanoparticles.

Fig. 2.
Fig. 2.

TiO2 coating time dependence of UV and green emissions of ZnO nanorods. The triangle denotes the PL intensity ratio between the UV emission of ZnO nanorods with (I) and without (I0) TiO2 nanoparticles. The diamond denotes the PL intensity ratio between the green emission with (I’) and without (I’0) TiO2 nanoparticles.

Fig. 3.
Fig. 3.

Raman scattering spectrum of sputtered TiO2 on Si substrate for 3000 s.

Fig. 4.
Fig. 4.

(a). Photoluminescence and photoluminescence excitation spectra of sputtered TiO2 nanoparticles (3000s) and (b) Scanning electron microscopy image of sputtered TiO2 nanoparticles (700 s) on Si substrate.

Fig. 5.
Fig. 5.

(a). Photoluminescence excitation spectra of ZnO nanorods with and without TiO2 nanoparticles monitored at 3.25 eV. The intensity (dashed line) for ZnO nanorods without TiO2 nanoparticles has been multiplied by 20 times. (b) Photoluminescence excitation spectra of ZnO nanorods with and without TiO2 nanoparticles monitored at 2.48 eV.

Fig. 6.
Fig. 6.

Energy band alignment of ZnO/TiO2 composite. As these two materials are brought together through the resonance effect, the excited electron-hole pairs in TiO2 nanoparticles can easily transfer their energy into ZnO nanorods and contribute to the band edge emission.

Metrics