Abstract

We demonstrate projection of highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. In three subjects with good fixation stability, stimulus location accuracy averaged 0.26 arcminutes or approximately 1.3 microns, which is smaller than the cone-to-cone spacing at the fovea. We also demonstrate real-time correction for image distortions in adaptive optics scanning laser ophthalmoscope (AOSLO) with an intraframe accuracy of about 7 arcseconds.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. E. Arend and G. T. Timberlake, "What is psychophysically perfect image stabilization? Do perfectly stabilized images always disappear?," J. Opt. Soc. Am. A 3, 235-241 (1986).
    [CrossRef] [PubMed]
  2. M. Rucci and G. Desbordes, "Contributions of fixational eye movements to the discrimination of briefly presented stimuli," J. Vision 3, 852-864 (2003).
    [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  4. S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
    [PubMed]
  5. M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
    [CrossRef] [PubMed]
  6. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation and image dewarping in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006).
    [CrossRef] [PubMed]
  7. S. B. Stevenson and A. Roorda, "Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy" in Ophthalmic Technologies XI, F. Manns, P. Soderberg, and A. Ho, eds., (SPIE, Bellingham, WA 2005).
  8. D. W. Arathorn, Map-Seeking Circuits in Visual Cognition (Stanford University Press, Stanford 2002).
  9. H. B. Barlow, "Eye movements during fixation," J. Physiol 116, 290-306 (1952).
    [PubMed]
  10. M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
    [CrossRef] [PubMed]
  11. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
    [CrossRef] [PubMed]
  12. L. A. Riggs, J. C. Armington, and F. Ratliff, "Motions of the retinal image during fixation," J. Opt. Soc. Am. 44, 315-321 (1954).
    [CrossRef] [PubMed]
  13. T. N. Cornsweet, "Determination of the stimuli for involuntary drifts and saccadic eye movements," J. Opt. Soc. Am. 46, 987-993 (1956).
    [CrossRef] [PubMed]
  14. G. Kumar, S. B. Stevenson, and A. Roorda, "Saccadic targeting variability revealed by high magnification retinal imaging," J. Vision 6, 495 (2006). http://journalofvision.org/6/6/495/
    [CrossRef]
  15. R. Engbert and R. Kliegl, "Microsaccades keep the eyes' balance during fixation," Psychol. Sci. 15, 431-436 (2004).
    [CrossRef] [PubMed]
  16. D. W. Arathorn, "Computation in higher visual cortices: Map-seeking circuit theory and application to machine vision" in IEEE Advances in Image Pattern Recognition, (Institute of Electrical and Electronics Engineers, New York 2004).
  17. D. W. Arathorn, "Memory-driven visual attention: an emergent behavior of map-seeking circuits" in Neurobiology of Attention, L. Itti, G. Rees, and J. Tsotsos, eds., (Elsevier, 2004).
  18. D. W. Arathorn, "A cortically-plausible inverse problem solving method applied to recognizing static and kinematic 3D objects" in Advances in Neural Information Processing Systems, (MIT Press, 2005).
  19. D. W. Arathorn, "Cortically plausible inverse problem method applied to complex perceptual and planning tasks" Proc SPIE 6229, 62290E (2006).
  20. ANSI, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (Laser Institute of America, Orlando 2000).
  21. H. D. Crane and C. M. Steele, "Generation-V dual-Purkinje-image eyetracker," Appl. Opt. 24, 527-537 (1985).
    [CrossRef] [PubMed]
  22. L. A. Riggs and A. M. Schick, "Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens," Vision Res. 8, 159-169 (1968).
    [CrossRef] [PubMed]
  23. H. Deubel and B. Bridgeman, "Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades," Vision Res. 35, 529-538 (1995).
    [CrossRef] [PubMed]
  24. M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
    [CrossRef]
  25. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, "Flying spot TV ophthalmoscope," Appl. Opt. 19, 2991-2997 (1980).
    [CrossRef] [PubMed]
  26. H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
    [CrossRef]
  27. W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
    [CrossRef] [PubMed]
  28. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14, 12230-12242 (2006).
    [CrossRef] [PubMed]
  29. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]

2007

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

2006

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

G. Kumar, S. B. Stevenson, and A. Roorda, "Saccadic targeting variability revealed by high magnification retinal imaging," J. Vision 6, 495 (2006). http://journalofvision.org/6/6/495/
[CrossRef]

D. W. Arathorn, "Cortically plausible inverse problem method applied to complex perceptual and planning tasks" Proc SPIE 6229, 62290E (2006).

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation and image dewarping in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, "Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope," Opt. Express 14, 12230-12242 (2006).
[CrossRef] [PubMed]

2005

S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
[PubMed]

H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
[CrossRef]

2004

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
[CrossRef] [PubMed]

R. Engbert and R. Kliegl, "Microsaccades keep the eyes' balance during fixation," Psychol. Sci. 15, 431-436 (2004).
[CrossRef] [PubMed]

2003

M. Rucci and G. Desbordes, "Contributions of fixational eye movements to the discrimination of briefly presented stimuli," J. Vision 3, 852-864 (2003).
[CrossRef]

2002

1996

M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
[CrossRef] [PubMed]

1995

H. Deubel and B. Bridgeman, "Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades," Vision Res. 35, 529-538 (1995).
[CrossRef] [PubMed]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

1986

1985

M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
[CrossRef] [PubMed]

H. D. Crane and C. M. Steele, "Generation-V dual-Purkinje-image eyetracker," Appl. Opt. 24, 527-537 (1985).
[CrossRef] [PubMed]

1980

1968

L. A. Riggs and A. M. Schick, "Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens," Vision Res. 8, 159-169 (1968).
[CrossRef] [PubMed]

1956

1954

1952

H. B. Barlow, "Eye movements during fixation," J. Physiol 116, 290-306 (1952).
[PubMed]

Arathorn, D. W.

D. W. Arathorn, "Cortically plausible inverse problem method applied to complex perceptual and planning tasks" Proc SPIE 6229, 62290E (2006).

C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation and image dewarping in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006).
[CrossRef] [PubMed]

Arend, L. E.

Armington, J. C.

Barlow, H. B.

H. B. Barlow, "Eye movements during fixation," J. Physiol 116, 290-306 (1952).
[PubMed]

Bridgeman, B.

H. Deubel and B. Bridgeman, "Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades," Vision Res. 35, 529-538 (1995).
[CrossRef] [PubMed]

Campbell, M. C. W.

Carroll, J.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

Christie, N.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

Cornsweet, T. N.

Crane, H. D.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Desbordes, G.

M. Rucci and G. Desbordes, "Contributions of fixational eye movements to the discrimination of briefly presented stimuli," J. Vision 3, 852-864 (2003).
[CrossRef]

Deubel, H.

H. Deubel and B. Bridgeman, "Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades," Vision Res. 35, 529-538 (1995).
[CrossRef] [PubMed]

Donnelly, W. J.

Eizenman, M.

M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
[CrossRef] [PubMed]

Engbert, R.

R. Engbert and R. Kliegl, "Microsaccades keep the eyes' balance during fixation," Psychol. Sci. 15, 431-436 (2004).
[CrossRef] [PubMed]

Frecker, R. C.

M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
[CrossRef] [PubMed]

Grieve, K.

Hallet, P. E.

M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
[CrossRef] [PubMed]

Hebert, T. J.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
[PubMed]

Hofer, H.

H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
[CrossRef]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
[CrossRef] [PubMed]

Hughes, G. W.

Iovin, R.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Kliegl, R.

R. Engbert and R. Kliegl, "Microsaccades keep the eyes' balance during fixation," Psychol. Sci. 15, 431-436 (2004).
[CrossRef] [PubMed]

Kumar, G.

G. Kumar, S. B. Stevenson, and A. Roorda, "Saccadic targeting variability revealed by high magnification retinal imaging," J. Vision 6, 495 (2006). http://journalofvision.org/6/6/495/
[CrossRef]

Lin, J.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
[CrossRef] [PubMed]

Makous, W.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
[CrossRef] [PubMed]

Parker, A.

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
[PubMed]

Poletti, M.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

Pomerantzeff, O.

Poonja, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
[PubMed]

Queener, H.

Ratliff, F.

Riggs, L. A.

L. A. Riggs and A. M. Schick, "Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens," Vision Res. 8, 159-169 (1968).
[CrossRef] [PubMed]

L. A. Riggs, J. C. Armington, and F. Ratliff, "Motions of the retinal image during fixation," J. Opt. Soc. Am. 44, 315-321 (1954).
[CrossRef] [PubMed]

Romero-Borja, F.

Roorda, A.

Rucci, M.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

M. Rucci and G. Desbordes, "Contributions of fixational eye movements to the discrimination of briefly presented stimuli," J. Vision 3, 852-864 (2003).
[CrossRef]

Santini, F.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

Schick, A. M.

L. A. Riggs and A. M. Schick, "Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens," Vision Res. 8, 159-169 (1968).
[CrossRef] [PubMed]

Sendtner, R. A.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
[CrossRef] [PubMed]

Singer, B.

H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Steele, C. M.

Stetter, M.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
[CrossRef] [PubMed]

Stevenson, S. B.

G. Kumar, S. B. Stevenson, and A. Roorda, "Saccadic targeting variability revealed by high magnification retinal imaging," J. Vision 6, 495 (2006). http://journalofvision.org/6/6/495/
[CrossRef]

Timberlake, G. T.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
[CrossRef] [PubMed]

L. E. Arend and G. T. Timberlake, "What is psychophysically perfect image stabilization? Do perfectly stabilized images always disappear?," J. Opt. Soc. Am. A 3, 235-241 (1986).
[CrossRef] [PubMed]

Tiruveedhula, P.

Vogel, C. R.

Webb, R. H.

Williams, D. R.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
[CrossRef]

Wolfing, J. I.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Opt.

Invest Ophthalmol. Vis. Sci.

W. Makous, J. Carroll, J. I. Wolfing, J. Lin, N. Christie, and D. R. Williams, "Retinal microscotomas revealed with adaptive-optics microflashes," Invest Ophthalmol. Vis. Sci. 47, 4160-4167 (2006).
[CrossRef] [PubMed]

J. Comp. Neurol.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol

H. B. Barlow, "Eye movements during fixation," J. Physiol 116, 290-306 (1952).
[PubMed]

J. Refract. Surg.

S. Poonja, S. Patel, L. Henry, and A. Roorda, "Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope," J. Refract. Surg. 21, S575-S580 (2005).
[PubMed]

J. Vision

M. Rucci and G. Desbordes, "Contributions of fixational eye movements to the discrimination of briefly presented stimuli," J. Vision 3, 852-864 (2003).
[CrossRef]

G. Kumar, S. B. Stevenson, and A. Roorda, "Saccadic targeting variability revealed by high magnification retinal imaging," J. Vision 6, 495 (2006). http://journalofvision.org/6/6/495/
[CrossRef]

H. Hofer, B. Singer, and D. R. Williams, "Different sensations from cones with the same pigment," J. Vision 5, 444-454 (2005). http://journalofvision.org/5/5/5/
[CrossRef]

Nat. Rev. Neurosci.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, "The role of fixational eye movements in visual perception," Nat. Rev. Neurosci. 5, 229-240 (2004).
[CrossRef] [PubMed]

Nature

M. Rucci, R. Iovin, M. Poletti, and F. Santini, "Miniature eye movements enhance fine spatial detail," Nature 447, 852-855 (2007).
[CrossRef]

Opt. Express

Proc SPIE

D. W. Arathorn, "Cortically plausible inverse problem method applied to complex perceptual and planning tasks" Proc SPIE 6229, 62290E (2006).

Psychol. Sci.

R. Engbert and R. Kliegl, "Microsaccades keep the eyes' balance during fixation," Psychol. Sci. 15, 431-436 (2004).
[CrossRef] [PubMed]

Vision Res.

L. A. Riggs and A. M. Schick, "Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens," Vision Res. 8, 159-169 (1968).
[CrossRef] [PubMed]

H. Deubel and B. Bridgeman, "Fourth Purkinje image signals reveal eye-lens deviations and retinal image distortions during saccades," Vision Res. 35, 529-538 (1995).
[CrossRef] [PubMed]

M. Eizenman, P. E. Hallet, and R. C. Frecker, "Power spectra for ocular drift and tremor," Vision Res. 25, 1635-1640 (1985).
[CrossRef] [PubMed]

M. Stetter, R. A. Sendtner, and G. T. Timberlake, "A novel method for measuring saccade profiles using the scanning laser ophthalmoscope," Vision Res. 36, 1987-1994 (1996).
[CrossRef] [PubMed]

Other

S. B. Stevenson and A. Roorda, "Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy" in Ophthalmic Technologies XI, F. Manns, P. Soderberg, and A. Ho, eds., (SPIE, Bellingham, WA 2005).

D. W. Arathorn, Map-Seeking Circuits in Visual Cognition (Stanford University Press, Stanford 2002).

ANSI, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (Laser Institute of America, Orlando 2000).

D. W. Arathorn, "Computation in higher visual cortices: Map-seeking circuit theory and application to machine vision" in IEEE Advances in Image Pattern Recognition, (Institute of Electrical and Electronics Engineers, New York 2004).

D. W. Arathorn, "Memory-driven visual attention: an emergent behavior of map-seeking circuits" in Neurobiology of Attention, L. Itti, G. Rees, and J. Tsotsos, eds., (Elsevier, 2004).

D. W. Arathorn, "A cortically-plausible inverse problem solving method applied to recognizing static and kinematic 3D objects" in Advances in Neural Information Processing Systems, (MIT Press, 2005).

Supplementary Material (2)

» Media 1: AVI (5052 KB)     
» Media 2: AVI (2903 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Calculation of central patch movement between T0 and Tn

Fig. 2.
Fig. 2.

Calculation of fine movements of Tn

Fig. 3.
Fig. 3.

Data used for computing predicted location of stimulus

Fig. 4.
Fig. 4.

Determination of a Saccade/Blink

Fig. 5.
Fig. 5.

(link to fig5_movie.avi 1.9 MB) Real-time stabilized video. The video has been shortened, compressed and resampled to 2/3 of the original dimension. Video size is 400 × 400 pixels. Scale is 280 pixels per degree. The image shows a normalized addition of all 1063 frames in the stabilized sequence. The high contrast of cones in the added set is a further demonstration of the quality of the stabilization for long image sequences. [Media 1]

Fig. 6.
Fig. 6.

(link to fig6_movie.avi 2.9 MB) Stabilized stimulus delivery for subject C. The video has been cropped to 365×365 pixels from the original 512×512 pixel. The stimulus is part of the video and appears as a black cross. A digital white cross was written onto the video at the exact location of the stimulus. Scale is 413 pixels per degree. [Media 2]

Fig. 7.
Fig. 7.

An example of selecting a reference spot nearby the target on raw video. In this video, the stimulus was a black cross. A white digital cross at the exact location of the stimulus was overlayed at the time the video was recorded. The yellow cross indicates the location of a reference point that was used to measure stimulus location accuracy.

Fig. 8.
Fig. 8.

Variation of Δx and Δy between the target stimulus and a nearby reference spot for subject A video #1. Dropped segments (eg between frames 60–90 and 480–510) are due to blinks, saccades or image quality reduction caused by tear film breakup.

Fig. 9.
Fig. 9.

Normalized power distributions superimposed on a cone photoreceptor array. The small distributions are for a single diffraction limited spot of 600 nm light though a 6 mm pupil. The large distributions show a convolution of the diffraction-limited spot with the stabilized stimulus delivery error (standard deviation of 0.26 arcminutes). The upper plot shows those distributions with respect to a typical array of foveal cones and the lower plot show the same distributions with respect to cone array at 1.8 degrees eccentric to the fovea.

Tables (1)

Tables Icon

Table 1: Stimulus stability records for 13 video sequences from three subjects.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

max ( δ ix ) min ( δ ix ) > R sx
max ( δ iy ) min ( δ iy ) > R sy
C ix < R cx
C iy < R cy

Metrics