Abstract

An array of paired elliptic nanoparticles designed to enhance local fields around the particle pair is fabricated with gold embedded in quartz. Light excites a coupled plasmon resonance in the particle pair and the system acts like a plasmonic nanoantenna providing an enhanced electromagnetic field. Near-field scanning optical microscopy and finite element modeling are used to study the local field effects of the nanoantenna system. Local illumination shows similar resonant properties as plane wave illumination: a strong, localized optical resonance for light polarized parallel to the main, center-to-center axis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]
  2. K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
    [CrossRef]
  3. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  4. T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
    [CrossRef]
  5. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  6. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
    [CrossRef]
  7. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
    [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  9. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
    [CrossRef] [PubMed]
  10. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
    [CrossRef]
  11. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  12. O. L. Muskens, J. G. Rivas, V. Giannini, and J. A. Sanchez-Gil, "Optical scattering resonances of single plasmonic nanoantennas," arXiv:cond-mat/0612689v3 (2006).
  13. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef] [PubMed]
  14. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  15. P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
    [CrossRef]
  16. T. Sondergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: scattering and field enhancements," Phys. Rev. B 75, 073402 (2007).
    [CrossRef]
  17. D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  18. I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
    [CrossRef]
  19. A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007).
    [CrossRef]
  20. D. Courjon, Near-field Microscopy and Near Field Optics (Imperial College Press, London, 2003).

2007

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
[CrossRef]

T. Sondergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: scattering and field enhancements," Phys. Rev. B 75, 073402 (2007).
[CrossRef]

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

2006

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

2005

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

2003

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Agio, M.

Atay, T.

T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Aussenegg, F. R

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S.

T. Sondergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: scattering and field enhancements," Phys. Rev. B 75, 073402 (2007).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Conley, N. R.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Eisler, H. J.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
[CrossRef]

Farahani, J. N.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

Fluckiger, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

Fromm, D. P.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Gasser, P.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Hecht, B.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
[CrossRef]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
[CrossRef]

Kall, M.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Kaminski, F.

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Keitner, A.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Mock, J. J.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Moerner, W. E

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

O'Reilly, E. P.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Pavius, M.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

Pohl, D. W.

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Protsenko, I. E.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Rindzevicius, T.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Rivas, J. G.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Rogobete, L.

Samoilov, V. N.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

Sarychev, A. K.

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007).
[CrossRef]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Schultz, S.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Shatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Smith, D. R.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Sondergaard, T.

T. Sondergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: scattering and field enhancements," Phys. Rev. B 75, 073402 (2007).
[CrossRef]

Song, J-H.

T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Tartakovsky, G.

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007).
[CrossRef]

Uskov, A. V.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Zaimidoroga, O. A.

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Zheng, X.

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Appl. Phys. Lett.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

J. Phys. Chem. B

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kall, S. Zou and G. C. Shatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109, 1079-1087 (2005).
[CrossRef]

Nano Lett.

A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas," Nano Lett. 6, 355-360 (2006).
[CrossRef] [PubMed]

K. H. Su, Q. H. Wei, X. Zheng, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087-1090 (2003).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

T. Atay, J-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, "On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation," Nano Lett. 7, 2080-2088 (2007).
[CrossRef]

Nanotechnology

J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechnology,  18, 125506 (2007).
[CrossRef]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Keitner, J. R. Krenn, B. Lamprecht, and F. R Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Lett.

Phys. Rev. A

I. E. Protsenko, A. V. Uskov, O. A. Zaimidoroga, V. N. Samoilov, and E. P. O'Reilly, "Dipole nanolaser," Phys. Rev. A 71, 063812 (2005).
[CrossRef]

Phys. Rev. B

A. K. Sarychev and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007).
[CrossRef]

T. Sondergaard and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: scattering and field enhancements," Phys. Rev. B 75, 073402 (2007).
[CrossRef]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409 (2005).
[CrossRef]

Phys. Rev. Lett.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

D. J. Bergman and M. I. Stockman, "Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Science

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Other

D. Courjon, Near-field Microscopy and Near Field Optics (Imperial College Press, London, 2003).

O. L. Muskens, J. G. Rivas, V. Giannini, and J. A. Sanchez-Gil, "Optical scattering resonances of single plasmonic nanoantennas," arXiv:cond-mat/0612689v3 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The nanoantenna sample. (a) FESEM image; (b) XZ cross section; (c) Experimental (broken) far-field transmission and reflection spectra compared to far-field simulation (circled) data, INSET Absorption for the double and single particle (X polarized light).

Fig. 2.
Fig. 2.

Illumination mode NSOM images taken with a 785 nm light source of the same corner of the sample array: (a) Reflection image with polarization across the gap (X direction), INSET the orthogonal polarization (Y direction); color bar taken with 1 being the reflection value away from the sample; (b) Transmission image with polarization across the gap, INSET the orthogonal polarization; color bar taken with 100 being the transmission away from the sample. Inset images are shown with a size reduction of 50%.

Fig. 3.
Fig. 3.

Finite element visualization of the nanoantenna effect in paired particles compared with reflection NSOM. (a) The electric field intensity above the paired particles taken at 790 nm with light polarized parallel to the gap (X axis); (b) Illumination NSOM in reflection of the paired particles; (c) FESEM image at the exact location of the NSOM measurement; (d) XY electric field vector plot half way between the top and bottom surfaces; taken at 810 nm.

Metrics