Abstract

A novel algorithm for the retrieval of the spatial mutual coherence function of the optical field of a light beam in the quasimonochromatic approximation is presented. The algorithm only requires that the intensity distribution is known in a finite number of transverse planes along the beam. The retrieval algorithm is based on the observation that a partially coherent field can be represented as an ensemble of coherent fields. Each field in the ensemble is propagated with coherent methods between neighboring planes, and the ensemble is then subjected to amplitude restrictions, much in the same way as in conventional phase recovery algorithms for coherent fields. The proposed algorithm is evaluated both for one- and two-dimensional fields using numerical simulations.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, "Diffraction and optical image formation," Proc. Phys. Soc. 61,158-164 (1948).
    [CrossRef]
  2. B. J. Thompson and E. Wolf, "Two-beam interference with partially coherent light," J. Opt. Soc. Am. 47,895-902 (1957).
  3. J. Schwider, "Continuous Lateral Shearing Interferometer," Appl. Opt. 23, 4403-4409 (1983).
  4. C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
    [CrossRef]
  5. M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).
  6. M. Santarsiero, F. Gori, R. Borghi, and G. Guattari, "Evaluation of the modal structure of light beams composed of incoherent mixtures of Hermite-Gaussian modes," Appl. Opt. 38, 5272-5281 (1999).
  7. H. Laabs, B. Eppich, and H. Weber, "Modal decomposition of partially coherent beams using the ambiguity function," J. Opt. Soc. Am. A 19, 497-504 (2002).
    [CrossRef]
  8. R. Borghi, G. Guattari, L. de la Torre, F. Gori, and M. Santarsiero, "Evaluation of the spatial coherence of a light beam through transverse intensity measurements," J. Opt. Soc. Am. A 20, 1763-1770 (2003).
    [CrossRef]
  9. M. Je?zek and Z. Hradil, "Reconstruction of spatial, phase, and coherence properties of light," J. Opt. Soc. Am. A 21, 1407-1416 (2004).
    [CrossRef]
  10. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  11. B. Y. Gu, G. Z. Yang, and B. Z. Dong, "General theory for performing an optical transform," Appl. Opt. 25, 3197-3206 (1986).
  12. L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press, Cambridge (1995).
  13. F. Gori and M. Santarsiero, "Coherence and the spatial distribution of intensity," J. Opt. Soc. Am. A 10, 673-679 (1993).
  14. A. T. Friberg, E. Tervonen, and J. Turunen, "Interpretation and experimental demonstration of twisted Gaussian Schell-model beams," J. Opt. Soc. Am. A 11,1818-1825 (1994).
  15. D. Dragoman, "Unambiguous coherence retrieval from intensity measurements," J. Opt. Soc. Am. A 20, 290-295 (2003).
    [CrossRef]
  16. C. Rydberg and J. Bengtsson, "Efficient numerical representation of the optical field for the propagation of partially coherent radiation with a specified spatial and temporal coherence function," J. Opt. Soc. Am. A 23, 1616-1625 (2006).
    [CrossRef]
  17. H. Stark and Y.Y. Yang, Vector space projections: A numerical approach to signal and image processing, neural nets, and optics, Wiley, New York (1998).
  18. J. R. Fienup, "Phase-retrieval algorithms for a complicated optical system," Appl. Opt. 32, 1737-1746 (1993).
  19. J. W. Goodman, Introduction to Fourier optics, McGraw-Hill, New York, 1996.

2006 (1)

2004 (1)

2003 (2)

2002 (1)

2000 (1)

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

1999 (1)

1994 (1)

1993 (3)

F. Gori and M. Santarsiero, "Coherence and the spatial distribution of intensity," J. Opt. Soc. Am. A 10, 673-679 (1993).

M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).

J. R. Fienup, "Phase-retrieval algorithms for a complicated optical system," Appl. Opt. 32, 1737-1746 (1993).

1986 (1)

1983 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

1957 (1)

1948 (1)

F. Zernike, "Diffraction and optical image formation," Proc. Phys. Soc. 61,158-164 (1948).
[CrossRef]

Anderson, E.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

Attwood, D.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

Beck, M.

M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).

Bengtsson, J.

Borghi, R.

Chang, C.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

de la Torre, L.

Dong, B. Z.

Dragoman, D.

Eppich, B.

Fienup, J. R.

Friberg, A. T.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Gori, F.

Gu, B. Y.

Guattari, G.

Hradil, Z.

Je?zek, M.

Laabs, H.

McAlister, D. F.

M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).

Naulleau, P.

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

Raymer, M. G.

M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).

Rydberg, C.

Santarsiero, M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Schwider, J.

Tervonen, E.

Thompson, B. J.

Turunen, J.

Weber, H.

Wolf, E.

Yang, G. Z.

Zernike, F.

F. Zernike, "Diffraction and optical image formation," Proc. Phys. Soc. 61,158-164 (1948).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

Opt. Commun. (1)

C. Chang, P. Naulleau, E. Anderson, and D. Attwood, "Spatial coherence characterization of undulator radiation," Opt. Commun. 182, 25-34 (2000).
[CrossRef]

Optik (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Phys. Rev. Letters (1)

M. G. Raymer, M. Beck and D. F. McAlister, "Complex wave-field reconstruction using phase-space tomography," Phys. Rev. Letters 72, 1137-1140 (1993).

Proc. Phys. Soc. (1)

F. Zernike, "Diffraction and optical image formation," Proc. Phys. Soc. 61,158-164 (1948).
[CrossRef]

Other (3)

L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press, Cambridge (1995).

H. Stark and Y.Y. Yang, Vector space projections: A numerical approach to signal and image processing, neural nets, and optics, Wiley, New York (1998).

J. W. Goodman, Introduction to Fourier optics, McGraw-Hill, New York, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics