Abstract

Stability of the similariton mode-locked regime in Yb-doped fiber laser in the vicinity of zero cavity dispersion is studied by means of numerical simulations. It is shown that similariton pulses which initially arise from laser noise collapse into a continuous wave state. The mode-locked pulses are found to be stable after a certain cavity dispersion threshold is exceeded. From analysis of the instability development, we conclude that instability has parametric nature. We compare our results with stability analysis based on the Ginzburg-Landau approach. Analogies with instabilities found in the long-haul fiber communication systems are also discussed.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J.M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc. Am. B 19, 461-469 (2002).
  3. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005)
    [CrossRef]
  4. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
    [CrossRef]
  5. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef]
  6. C. Antonelli, J. Chen, and F. X. Kartner, "Intracavity pulse dynamics and stability for passively mode-locked lasers," Opt. Express 15, 5919-5924 (2007).
    [CrossRef]
  7. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
    [CrossRef]
  8. P. -A. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007).
    [CrossRef]
  9. O. E. Martinez, R. L. Fork, and J. P. Gordon, "Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient," J. Opt. Soc. Am. B 2, 753-760 (1985).
  10. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991).
  11. N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).
  12. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
    [CrossRef]
  13. E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
  14. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optcs, 2nd ed., (Academic, San Diego, Calif., 1995).
  16. F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987).
  17. L. Zhao, D. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
    [CrossRef]
  18. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, "Sideband instability induced by periodic power variation in long-distance fiber links," Opt. Lett. 18, 1499-1501 (1993).
  19. P. Serena, A. Bononi, and A. Orlandini, "Fundamental laws of parametric gain in periodic dispersion-managed optical links," J. Opt. Soc. Am. B 24, 773-787 (2007).
    [CrossRef]
  20. Y. Logvin, V. P. Kalosha, and H. Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985 (2007).
    [CrossRef]
  21. S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
    [CrossRef]
  22. D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, "Resonant sideband generation in stretched-pulse fiber lasers," Opt. Lett. 23, 1535-1537 (1998).

2007 (5)

2006 (3)

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
[CrossRef]

2005 (3)

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).

C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005)
[CrossRef]

2004 (2)

L. Zhao, D. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

2002 (1)

1998 (1)

1993 (1)

1992 (1)

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

1991 (1)

1985 (1)

Anis, H.

Antonelli, C.

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Bélanger, P. -A.

Bononi, A.

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

Burgoyne, B.

Chedot, C.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Chen, J.

Chen, Y.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

Dudley, J.M.

Fork, R. L.

Fujimoto, J. G.

Godbout, N.

Gordon, J. P.

Harvey, J. D.

Haus, H. A.

Hideur, A.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Hohmuth, R.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

Ippen, E. P.

Jones, D. J.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).

Kalosha, V. P.

Kartner, F. X.

Kelly, S. M. J.

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Kracht, D.

Kruglov, V. I.

Lacroix, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Limpert, J.

Lin, F.

Logvin, Y.

Martel, G.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Martinez, O. E.

Matera, F.

Mecozzi, A.

Nielsen, C.

Orlandini, A.

Ortaç, B.

Peacock, A. C.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).

Prochnow, O.

Richter, W.

Romagnoli, M.

Ruehl, A.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Schreiber, T.

Serena, P.

Settembre, M.

Tang, D.

Tünnermann, A.

Wandt, D.

Wise, F. W.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

Zhao, B.

Zhao, L.

Appl. Phys. B (2)

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Electron. Lett. (1)

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

J. Opt. Soc. Am. B (4)

JETP Lett. (1)

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. E (1)

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).

Other (3)

N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).

G. P. Agrawal, Nonlinear Fiber Optcs, 2nd ed., (Academic, San Diego, Calif., 1995).

F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics