Abstract

Stability of the similariton mode-locked regime in Yb-doped fiber laser in the vicinity of zero cavity dispersion is studied by means of numerical simulations. It is shown that similariton pulses which initially arise from laser noise collapse into a continuous wave state. The mode-locked pulses are found to be stable after a certain cavity dispersion threshold is exceeded. From analysis of the instability development, we conclude that instability has parametric nature. We compare our results with stability analysis based on the Ginzburg-Landau approach. Analogies with instabilities found in the long-haul fiber communication systems are also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
    [CrossRef]
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J.M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc. Am. B 19, 461-469 (2002).
    [CrossRef]
  3. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005)
    [CrossRef] [PubMed]
  4. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
    [CrossRef]
  5. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
    [CrossRef] [PubMed]
  6. C. Antonelli, J. Chen, and F. X. Kartner, "Intracavity pulse dynamics and stability for passively mode-locked lasers," Opt. Express 15, 5919-5924 (2007).
    [CrossRef] [PubMed]
  7. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  8. P. -A. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007).
    [CrossRef] [PubMed]
  9. O. E. Martinez, R. L. Fork, and J. P. Gordon, "Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient," J. Opt. Soc. Am. B 2, 753-760 (1985).
    [CrossRef]
  10. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991).
    [CrossRef]
  11. N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).
  12. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
    [CrossRef]
  13. E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
    [CrossRef]
  14. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optcs, 2nd ed., (Academic, San Diego, Calif., 1995).
  16. F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987).
  17. L. Zhao, D. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
    [CrossRef] [PubMed]
  18. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, "Sideband instability induced by periodic power variation in long-distance fiber links," Opt. Lett. 18, 1499-1501 (1993).
    [CrossRef] [PubMed]
  19. P. Serena, A. Bononi, and A. Orlandini, "Fundamental laws of parametric gain in periodic dispersion-managed optical links," J. Opt. Soc. Am. B 24, 773-787 (2007).
    [CrossRef]
  20. Y. Logvin, V. P. Kalosha, and H. Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985 (2007).
    [CrossRef] [PubMed]
  21. S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
    [CrossRef]
  22. D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, "Resonant sideband generation in stretched-pulse fiber lasers," Opt. Lett. 23, 1535-1537 (1998).
    [CrossRef]

2007

2006

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006).
[CrossRef] [PubMed]

2005

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
[CrossRef]

C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005)
[CrossRef] [PubMed]

2004

L. Zhao, D. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004).
[CrossRef] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

2002

1998

1993

1992

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

1991

1985

Anis, H.

Antonelli, C.

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Bélanger, P. -A.

Bononi, A.

Brunel, M.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Burgoyne, B.

Chedot, C.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Chen, J.

Chen, Y.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Dudley, J.M.

Fork, R. L.

Fujimoto, J. G.

Godbout, N.

Gordon, J. P.

Harvey, J. D.

Haus, H. A.

Hideur, A.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Hohmuth, R.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Ippen, E. P.

Jones, D. J.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
[CrossRef]

Kalosha, V. P.

Kartner, F. X.

Kelly, S. M. J.

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Kracht, D.

Kruglov, V. I.

Lacroix, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Limpert, J.

Lin, F.

Logvin, Y.

Martel, G.

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

Martinez, O. E.

Matera, F.

Mecozzi, A.

Nielsen, C.

Orlandini, A.

Ortaç, B.

Peacock, A. C.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
[CrossRef]

Prochnow, O.

Richter, W.

Romagnoli, M.

Ruehl, A.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Schreiber, T.

Serena, P.

Settembre, M.

Tang, D.

Tünnermann, A.

Wandt, D.

Wise, F. W.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Zhao, B.

Zhao, L.

Appl. Phys. B

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006).
[CrossRef]

Electron. Lett.

S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005).
[CrossRef]

Phys. Rev. Lett.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004).
[CrossRef]

Other

N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).

G. P. Agrawal, Nonlinear Fiber Optcs, 2nd ed., (Academic, San Diego, Calif., 1995).

F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of the fiber ring laser: SMF - single mode fiber, Yb - Yb-doped fiber, DDL - dispersion delay line, PBS - polarization beam splitter, WDM - wavelength division multiplexer coupler, WP - wave plate.

Fig. 2.
Fig. 2.

(a). Temporal profile and (b) the corresponding spectrum of the similariton pulse formed in the SMF. Parabolic fit is shown in (a) by the dashed line. (c) Development of the cw background in the initially formed similariton state. The pulse is taken at the output from the Yb-doped fiber. (d) Development of the cw and low frequency components in the spectrum. The lower part of the spectrum is similar to that shown in (b). Cavity GVD is 0.007 ps2.

Fig. 3.
Fig. 3.

(a). Energy inside the laser cavity with time expressed in the roundtrip numbers for different cavity dispersion: solid line corresponds to the cavity dispersion of 0.004 ps2, dash-doted line - 0.007ps2, dashed line - 0.012 ps2. (b) Dependence of the energy of the mode-locked pulses on the total cavity dispersion. Ecw presents the energy of the continuous wave state.

Fig.4.
Fig.4.

(a). The early stage and (b) the late stage of the cw instability development with time expressed in cavity roundtrips for parameters corresponding to the dashed curve in Fig. 3 (a).

Fig. 5.
Fig. 5.

(a). The temporal profiles and (b) corresponding spectra illustrating instability development within one roundtrip at non-zero TOD β 3=30 fs3/mm and other parameters as in Fig. 2. The spectra, from upper to lower, correspond to propagation from SMF to Yb-doped fiber.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A t 2 + β 3 6 3 A t 3 + i γ A 2 A + g ( E ) ( 1 + 1 Ω g 2 2 t 2 ) A lA ,

Metrics