Abstract

We report on the principle of operation, construction and testing of a liquid crystal lens which is controlled by distributing voltages across the control electrodes, which are in turn controlled by adjusting the phase of the applied voltages. As well as (positive and negative) defocus, then lenses can be used to control tip/tilt, astigmatism, and to create variable axicons.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kuiper and H. H. W. Hendricks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85:1128-1130 (2004).
    [CrossRef]
  2. Varioptic Company (www.varioptic.com)
  3. A. Kaplan, N. Friedman, and N. Davidson, "Acousto-optic lens with very fast scanning," Opt. Lett. 26:1078-1080 (2001).
    [CrossRef]
  4. D. Y. Zhang, N. Justis, and Y. H. Lo. "Integrated fluidic adaptive zoom lens," Opt. Lett. 29,2855-2857 (2004).
    [CrossRef]
  5. L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
    [CrossRef] [PubMed]
  6. L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
    [CrossRef]
  7. A. F. Naumov, M.Yu. Loktev, I. R. Guralnik, and G. Vdovin, "Liquid crystal adaptive lens with modal control," Opt. Lett. 23,992-994 (1998).
    [CrossRef]
  8. A. F. Naumov, G. D. Love, M.Yu. Loktev and F. L. Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4,344-352 (1999).
    [CrossRef] [PubMed]
  9. O. A. Zayakin, M. Yu. Loktev, G. D. Love, and A. F. Naumov, "Cylindrical adaptive lenses," Proc. SPIE 3983,112-117 (1999).
    [CrossRef]
  10. A. K. Kirby and G. D. Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12,1470-1475 (2004).
    [CrossRef] [PubMed]
  11. G. Love, J. Major, and A. Purvis, "Liquid crystal prisms for tip—tilt adaptive optics," Opt. Lett. 19,1170-1172 (1994).
    [PubMed]
  12. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14,4525-4537 (2006).
    [CrossRef] [PubMed]

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14,4525-4537 (2006).
[CrossRef] [PubMed]

2004 (3)

2001 (1)

2000 (1)

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
[CrossRef]

1999 (2)

A. F. Naumov, G. D. Love, M.Yu. Loktev and F. L. Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4,344-352 (1999).
[CrossRef] [PubMed]

O. A. Zayakin, M. Yu. Loktev, G. D. Love, and A. F. Naumov, "Cylindrical adaptive lenses," Proc. SPIE 3983,112-117 (1999).
[CrossRef]

1998 (1)

1994 (1)

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
[CrossRef]

Davidson, N.

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Friedman, N.

Guralnik, I. R.

Hands, P. J. W.

Hendricks, H. H. W.

S. Kuiper and H. H. W. Hendricks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85:1128-1130 (2004).
[CrossRef]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Justis, N.

Kaplan, A.

Kirby, A. K.

Kuiper, S.

S. Kuiper and H. H. W. Hendricks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85:1128-1130 (2004).
[CrossRef]

Lo, Y. H.

Loktev, M. Yu.

O. A. Zayakin, M. Yu. Loktev, G. D. Love, and A. F. Naumov, "Cylindrical adaptive lenses," Proc. SPIE 3983,112-117 (1999).
[CrossRef]

Loktev, M.Yu.

Love, G.

Love, G. D.

Major, J.

Naumov, A. F.

Purvis, A.

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
[CrossRef]

Tatarkova, S. A.

Vdovin, G.

Vladimirov, F. L.

Zayakin, O. A.

O. A. Zayakin, M. Yu. Loktev, G. D. Love, and A. F. Naumov, "Cylindrical adaptive lenses," Proc. SPIE 3983,112-117 (1999).
[CrossRef]

Zhang, D. Y.

Appl. Phys. Lett. (1)

S. Kuiper and H. H. W. Hendricks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85:1128-1130 (2004).
[CrossRef]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe and H. Jiang, "Adaptive liquid microlenses activated by stimuli responsive hydrogels," Nature 442, 551-554 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, "Variable focal length microlenses," Opt. Commun. 177,157-170 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

O. A. Zayakin, M. Yu. Loktev, G. D. Love, and A. F. Naumov, "Cylindrical adaptive lenses," Proc. SPIE 3983,112-117 (1999).
[CrossRef]

Other (1)

Varioptic Company (www.varioptic.com)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

1-D schematic of LC device construction and of the electrode configuration used to produce a cylindrical lens. The same AC voltage is applied to each end of the cell – but with a phase shift. (a) and (b) show the cell construction and (c) shows the electrical connections used to drive the cell. A conventional AC source is used along with a phase shifter (the symbols have their conventional meanings).

Fig. 2.
Fig. 2.

Variation in phase (dashed) and RMS voltage (solid) profiles versus distance along an LC cell, for different values of the inter-electrode phase, ϕ. Applied voltage, Vo=18Vpp. The cell (active area) length was 10mm.

Fig. 3.
Fig. 3.

Adding bias voltage to remove optical phase plateau (one dimensional case).

Fig. 4.
Fig. 4.

Voltage and optical phase profiles used to produce a negative lens using dual frequency LC. A high frequency V- profile (red line) is generated, as described earlier. A low frequency constant bias voltage (green line) is also added to the cell. The LC responds to the difference of these voltages (purple line) and thus the phase profile of a negative lens (blue line) is produced.

Fig. 5.
Fig. 5.

Experimental interferograms and phase profiles for lenses of increasing power. (a) Interferogram and (d) unwrapped phase profile for Vrms (x,y)=5.65V, Vrms (bias)=2.12V, ϕ =180°. (b) Interferogram and (e) unwrapped phase profile for Vrms (x,y)=5.65V, Vrms (bias)=2.82V, ϕ =180° (c) Interferogram and (f) unwrapped phase profile for Vrms (x,y)=4.60V, Vrms (bias)=3.54V, ϕ =180°

Fig. 6.
Fig. 6.

Experimental phase profiles for values of ϕ =140°, 160° and 180° Vrms(x,y)=4.5V, Vrms(bias)=1.2Vin each case.

Fig. 7.
Fig. 7.

Interferogram (a) and the unwrapped phase profile (b) using drive voltages of VxLF=5.65 rms, VxLF_bias=2.12Vrms, ϕ x = ϕ y =180°, VyLF=6.7 Vrms, VyHF=2.35 Vrms

Fig. 8.
Fig. 8.

Cross section of the phase profile of an axicon. The red data points are experiment data points measured using a Zygo phase shifting interferometer and black lines are least squares fits to each half of the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = d 2 8 Δ nd ,

Metrics