Abstract

Displays with a larger color gamut to represent the images of the small color gamut are emphasized in the display development trend recently. Resulting from the vigorous development of Light Emitting Diodes (LEDs), the solutions to enlarge the color gamut which is formed a polygon area by adding multiple primary colors are possible, easier and inexpensive considerably. Therefore, how to determine the Gamut Boundary Description (GBD) plays a significant role for the applications of the multiple primary color displays, where the primaries form a convex polygon in CIE xy space. The paper proposed a method to construct the three-dimension color volume of GBD from the two-dimension polygon gamut area precisely regardless of that how many multiple primary colors the displays have. The method is examined in detail by the simulations and experiments, and proved it to fulfill from tri-primary color device to N-primary color device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang, and H. Xu, "Determination of CRT color gamut boundaries in perceptual color space," in Electronic Imaging and Multimedia Technology IV(SPIE, Beijing, China, 2005), pp. 332-338.
  2. S. Wen, "Design of relative primary luminances for four-primary displays," Displays 26, 171-176 (2005).
    [CrossRef]
  3. S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).
  4. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Expanded color gamut reproduced by six-primary projection display," in Projection Displays 2000: Sixth in a Series(SPIE, San Jose, CA, USA, 2000), pp. 130-137.
  5. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
    [CrossRef]
  6. Y. Murakami, N. Hatano, J. Takiue, M. Yamaguchi, and N. Ohyama, "Evaluation of smooth tonal change reproduction on multiprimary display: comparison of color conversion algorithms," in Liquid Crystal Materials, Devices, and Applications X and Projection Displays X(SPIE, San Jose, CA, USA, 2004), pp. 275-283.
  7. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, "Color image reproduction based on multispectral and multiprimary imaging: experimental evaluation," in Color Imaging: Device-Independent Color, Color Hardcopy, and Applications VII(SPIE, San Jose, CA, USA, 2001), pp. 15-26.
  8. M. Yamaguchi, R. Iwama, Y. Ohya, T. Obi, N. Ohyama, Y. Komiya, and T. Wada, "Natural color reproduction in the television system for telemedicime," in Medical Imaging 1997: Image Display(SPIE, Newport Beach, CA, USA, 1997), pp. 482-489.
  9. J.-G. Chang, C. L.-D. Liao, and C.-C. Hwang, "Enhancement of the optical performances for the LED backlight systems with a novel lens cap," in Novel Optical Systems Design and Optimization IX(SPIE, San Diego, CA, USA, 2006), pp. 62890X-62896.
  10. P. C. P. Chao, L.-D. Liao, and C.-W. Chiu, "Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs," in Photonics in Multimedia(SPIE, Strasbourg, France, 2006), pp. 61960N-61969.
  11. E. H. Ford, "Projection optical system for a scanned LED TV display," in Optical Scanning 2002(SPIE, Seattle, WA, USA, 2002), pp. 111-122.
  12. W. Y. Lee, Y. C. Lee, K. Sokolov, H. J. Lee, and I. Moon, "LED projection displays," in Nonimaging Optics and Efficient Illumination Systems(SPIE, Denver, CO, USA, 2004), pp. 1-7.
  13. B. A. Salters, and M. P. C. M. Krijn, "Color reproduction for LED-based general lighting," in Nonimaging Optics and Efficient Illumination Systems III(SPIE, San Diego, CA, USA, 2006), pp. 63380F-63311.
  14. D.-W. Kang, Y.-T. Kim, Y.-H. Cho, K.-H. Park, W. Choe, and Y.-H. Ha, "Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space," in Color Imaging X: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2005), pp. 354-363.
  15. J. Giesen, E. Schuberth, K. Simon, and P. Zolliker, "Toward image-dependent gamut mapping: fast and accurate gamut boundary determination," in Color Imaging X: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2005), pp. 201-210.
  16. H. Zeng, "Spring-primary mapping: a fast color mapping method for primary adjustment and gamut mapping," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 605804-605812.
  17. P. Pellegri, and R. Schettini, "Gamut boundary determination for a color printer using the Face Triangulation Method," in Color Imaging VIII: Processing, Hardcopy, and Applications(SPIE, Santa Clara, CA, USA, 2003), pp. 542-547
  18. M. Ján, and L. Ronnier, "Calculating medium and image gamut boundaries for gamut mapping," Color Research & Application 25, 394-401 (2000).
    [CrossRef]
  19. Q. Huang, and D. Zhao, "The color gamut of LCD and its analytical expression," in ICO20: Illumination, Radiation, and Color Technologies(SPIE, 2006), pp. 60330A-60337.
  20. Q. Huang, and D. Zhao, "Gamut boundaries expressed with Zernike polynomials," in Color Science and Imaging Technologies(SPIE, Shanghai, China, 2002), pp. 149-154.
  21. P. G. Herzog, "Further development of the analytical color gamut representation," in Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III(SPIE, San Jose, CA, USA, 1998), pp. 118-128.
  22. M. D. F. Fritz Ebner, "Gamut mapping from below: Finding minimum perceptual distances for colors outside the gamut volume," Color Research & Application 22, 402-413 (1997).
    [CrossRef]
  23. P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
    [CrossRef]
  24. H. K. Chen Hung-Shing, "Three-dimensional gamut mapping method based on the concept of image-dependence," Journal of Imaging Science and Technology 46, 44-52 (2002).
  25. M. Shaw, "Gamut estimation using 2D surface splines," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 605807-605808.
  26. P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
    [CrossRef]
  27. R. Saito, and H. Kotera, "Image-dependent three-dimensional gamut mapping using gamut boundary descriptor," Journal of Electronic Imaging 13, 630-638 (2004).
    [CrossRef]
  28. M.-K. Cho, B.-H. Kang, and H.-K. Choh, "Black extraction method using gamut boundary descriptors," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 60580O-60510.
  29. O.-Y. Mang, and H. Shih-Wei, "Design Considerations Between Color Gamut and Brightness for Multi-Primary Color Displays," Display Technology, Journal of 3, 71-82 (2007).
    [CrossRef]

2007 (1)

O.-Y. Mang, and H. Shih-Wei, "Design Considerations Between Color Gamut and Brightness for Multi-Primary Color Displays," Display Technology, Journal of 3, 71-82 (2007).
[CrossRef]

2006 (2)

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

2005 (1)

S. Wen, "Design of relative primary luminances for four-primary displays," Displays 26, 171-176 (2005).
[CrossRef]

2004 (1)

R. Saito, and H. Kotera, "Image-dependent three-dimensional gamut mapping using gamut boundary descriptor," Journal of Electronic Imaging 13, 630-638 (2004).
[CrossRef]

2002 (1)

H. K. Chen Hung-Shing, "Three-dimensional gamut mapping method based on the concept of image-dependence," Journal of Imaging Science and Technology 46, 44-52 (2002).

2000 (1)

M. Ján, and L. Ronnier, "Calculating medium and image gamut boundaries for gamut mapping," Color Research & Application 25, 394-401 (2000).
[CrossRef]

1999 (1)

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

1997 (1)

M. D. F. Fritz Ebner, "Gamut mapping from below: Finding minimum perceptual distances for colors outside the gamut volume," Color Research & Application 22, 402-413 (1997).
[CrossRef]

Ajito, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

Ben-Chorin, M.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

Ben-David, I.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

Ben-David, O.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

Chen Hung-Shing, H. K.

H. K. Chen Hung-Shing, "Three-dimensional gamut mapping method based on the concept of image-dependence," Journal of Imaging Science and Technology 46, 44-52 (2002).

Eliav, D.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

Fritz Ebner, M. D. F.

M. D. F. Fritz Ebner, "Gamut mapping from below: Finding minimum perceptual distances for colors outside the gamut volume," Color Research & Application 22, 402-413 (1997).
[CrossRef]

Ján, M.

M. Ján, and L. Ronnier, "Calculating medium and image gamut boundaries for gamut mapping," Color Research & Application 25, 394-401 (2000).
[CrossRef]

Kotera, H.

R. Saito, and H. Kotera, "Image-dependent three-dimensional gamut mapping using gamut boundary descriptor," Journal of Electronic Imaging 13, 630-638 (2004).
[CrossRef]

Mang, O.-Y.

O.-Y. Mang, and H. Shih-Wei, "Design Considerations Between Color Gamut and Brightness for Multi-Primary Color Displays," Display Technology, Journal of 3, 71-82 (2007).
[CrossRef]

Obi, T.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

Ohyama, N.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

Ronnier, L.

M. Ján, and L. Ronnier, "Calculating medium and image gamut boundaries for gamut mapping," Color Research & Application 25, 394-401 (2000).
[CrossRef]

Roth, S.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

Saito, R.

R. Saito, and H. Kotera, "Image-dependent three-dimensional gamut mapping using gamut boundary descriptor," Journal of Electronic Imaging 13, 630-638 (2004).
[CrossRef]

Shih-Wei, H.

O.-Y. Mang, and H. Shih-Wei, "Design Considerations Between Color Gamut and Brightness for Multi-Primary Color Displays," Display Technology, Journal of 3, 71-82 (2007).
[CrossRef]

Simon, K.

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

Wen, S.

S. Wen, "Design of relative primary luminances for four-primary displays," Displays 26, 171-176 (2005).
[CrossRef]

Yamaguchi, M.

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

Zolliker, P.

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

Color Research & Application (2)

M. Ján, and L. Ronnier, "Calculating medium and image gamut boundaries for gamut mapping," Color Research & Application 25, 394-401 (2000).
[CrossRef]

M. D. F. Fritz Ebner, "Gamut mapping from below: Finding minimum perceptual distances for colors outside the gamut volume," Color Research & Application 22, 402-413 (1997).
[CrossRef]

Displays (1)

S. Wen, "Design of relative primary luminances for four-primary displays," Displays 26, 171-176 (2005).
[CrossRef]

Journal of (1)

O.-Y. Mang, and H. Shih-Wei, "Design Considerations Between Color Gamut and Brightness for Multi-Primary Color Displays," Display Technology, Journal of 3, 71-82 (2007).
[CrossRef]

Journal of Electronic Imaging (3)

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

R. Saito, and H. Kotera, "Image-dependent three-dimensional gamut mapping using gamut boundary descriptor," Journal of Electronic Imaging 13, 630-638 (2004).
[CrossRef]

P. Zolliker, and K. Simon, "Continuity of gamut mapping algorithms," Journal of Electronic Imaging 15, 013004-013012 (2006).
[CrossRef]

Journal of Imaging Science and Technology (1)

H. K. Chen Hung-Shing, "Three-dimensional gamut mapping method based on the concept of image-dependence," Journal of Imaging Science and Technology 46, 44-52 (2002).

Optical Engineering (1)

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
[CrossRef]

Other (20)

Y. Murakami, N. Hatano, J. Takiue, M. Yamaguchi, and N. Ohyama, "Evaluation of smooth tonal change reproduction on multiprimary display: comparison of color conversion algorithms," in Liquid Crystal Materials, Devices, and Applications X and Projection Displays X(SPIE, San Jose, CA, USA, 2004), pp. 275-283.

M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, "Color image reproduction based on multispectral and multiprimary imaging: experimental evaluation," in Color Imaging: Device-Independent Color, Color Hardcopy, and Applications VII(SPIE, San Jose, CA, USA, 2001), pp. 15-26.

M. Yamaguchi, R. Iwama, Y. Ohya, T. Obi, N. Ohyama, Y. Komiya, and T. Wada, "Natural color reproduction in the television system for telemedicime," in Medical Imaging 1997: Image Display(SPIE, Newport Beach, CA, USA, 1997), pp. 482-489.

J.-G. Chang, C. L.-D. Liao, and C.-C. Hwang, "Enhancement of the optical performances for the LED backlight systems with a novel lens cap," in Novel Optical Systems Design and Optimization IX(SPIE, San Diego, CA, USA, 2006), pp. 62890X-62896.

P. C. P. Chao, L.-D. Liao, and C.-W. Chiu, "Design of a novel LED lens cap and optimization of LED placement in a large area direct backlight for LCD-TVs," in Photonics in Multimedia(SPIE, Strasbourg, France, 2006), pp. 61960N-61969.

E. H. Ford, "Projection optical system for a scanned LED TV display," in Optical Scanning 2002(SPIE, Seattle, WA, USA, 2002), pp. 111-122.

W. Y. Lee, Y. C. Lee, K. Sokolov, H. J. Lee, and I. Moon, "LED projection displays," in Nonimaging Optics and Efficient Illumination Systems(SPIE, Denver, CO, USA, 2004), pp. 1-7.

B. A. Salters, and M. P. C. M. Krijn, "Color reproduction for LED-based general lighting," in Nonimaging Optics and Efficient Illumination Systems III(SPIE, San Diego, CA, USA, 2006), pp. 63380F-63311.

D.-W. Kang, Y.-T. Kim, Y.-H. Cho, K.-H. Park, W. Choe, and Y.-H. Ha, "Color decomposition method for multiprimary display using 3D-LUT in linearized LAB space," in Color Imaging X: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2005), pp. 354-363.

J. Giesen, E. Schuberth, K. Simon, and P. Zolliker, "Toward image-dependent gamut mapping: fast and accurate gamut boundary determination," in Color Imaging X: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2005), pp. 201-210.

H. Zeng, "Spring-primary mapping: a fast color mapping method for primary adjustment and gamut mapping," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 605804-605812.

P. Pellegri, and R. Schettini, "Gamut boundary determination for a color printer using the Face Triangulation Method," in Color Imaging VIII: Processing, Hardcopy, and Applications(SPIE, Santa Clara, CA, USA, 2003), pp. 542-547

M. Shaw, "Gamut estimation using 2D surface splines," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 605807-605808.

Q. Huang, and D. Zhao, "The color gamut of LCD and its analytical expression," in ICO20: Illumination, Radiation, and Color Technologies(SPIE, 2006), pp. 60330A-60337.

Q. Huang, and D. Zhao, "Gamut boundaries expressed with Zernike polynomials," in Color Science and Imaging Technologies(SPIE, Shanghai, China, 2002), pp. 149-154.

P. G. Herzog, "Further development of the analytical color gamut representation," in Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III(SPIE, San Jose, CA, USA, 1998), pp. 118-128.

M.-K. Cho, B.-H. Kang, and H.-K. Choh, "Black extraction method using gamut boundary descriptors," in Color Imaging XI: Processing, Hardcopy, and Applications(SPIE, San Jose, CA, USA, 2006), pp. 60580O-60510.

S. Roth, I. Ben-David, M. Ben-Chorin, D. Eliav, and O. Ben-David, "Wide gamut, high brightness multiple primaries single panel projection displays," Digest SID'03 (2005).

T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Expanded color gamut reproduced by six-primary projection display," in Projection Displays 2000: Sixth in a Series(SPIE, San Jose, CA, USA, 2000), pp. 130-137.

Y. Wang, and H. Xu, "Determination of CRT color gamut boundaries in perceptual color space," in Electronic Imaging and Multimedia Technology IV(SPIE, Beijing, China, 2005), pp. 332-338.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The color gamut boundaries of tri-primary color device are the lines linked by these available color gamut boundary apexes with the same brightness.

Fig. 2.
Fig. 2.

(a): The color gamut boundaries of tri-primary color device are the lines linked by these available color gamut boundary apexes with the various brightness. (b): The overlook of (a).

Fig. 3.
Fig. 3.

(a): The color gamut boundaries of four-primary color device are the lines linked by these available color gamut boundary apexes with the various brightness. (b): The overlook of (a).

Fig. 4.
Fig. 4.

(a): The gamma curve with the set gamma values (0.6, 1, 2.2, 3.4). (b) The gamma curve with the set gamma values (1, 1, 1, 1). (c): The color datum of coordinate and brightness with the set gamma values (0.6, 1, 2.2, 3.4) are showing in Lxy. (d): The color datum of coordinate and brightness with the set gamma values (1, 1, 1, 1) are showing in Lxy. (e): (c) transfers from Lxy space into La*b* space. (f): (d) transfers from Lxy space into La*b* space.

Fig. 5.
Fig. 5.

Block diagram of three type experimental apparatus. The experiments of type (a) using a LCD monitor for a tri-primary color system. The experiment of type (b) is using a LCD projector and a DMP projector for a four-primary color system.

Fig. 6.
Fig. 6.

(a): A photo of the equipment of type (a) in Fig. 5 is shown. (b): A photo of the equipment of type (b) in Fig. 5 is shown, where the projector I is a DLP projector (Seha compact 236), and the projector I is a LCD projector (professional EX-2700 Series).

Fig. 7.
Fig. 7.

The simulation of the colors on the gamut boundary by tri-primary color device is compared with measurement in the gamut boundary, where the data on gamut boundary and in the gamut volume are marked with bigger dark point and smaller light point.

Fig. 8.
Fig. 8.

The simulation of the colors on the gamut boundary by four-primary color device is compared with measurement in the gamut boundary, where the data on gamut boundary and in the gamut volume are marked with bigger dark point and smaller light point.

Tables (4)

Tables Icon

Table 1. The five vertex points of the gamut boundary surface and the digital information on the surface of loop 1 on four-primary color device.

Tables Icon

Table 2. The four vertex points of the gamut boundary surface and the digital information on the surface of loop 2 on four-primary color device.

Tables Icon

Table 3. The four vertex points of the gamut boundary surface and the digital information on the surface of loop 3 on four-primary color device.

Tables Icon

Table 4. The vertex points of the gamut boundary surface and the digital information on N-primary color device.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G = x g y g = k = i j Y k y k x k k = i j Y k y k k = i j Y k y k y k k = i j Y k y k ,
M 1 = k = i j Y k y g x g + Y ' k = i j Y k y i 1 x i 1 k = i j Y k y g + Y ' k = i j Y k y i 1 k = i j Y k y g y g + Y ' k = i j Y k y i 1 y i 1 k = i j Y k y g + Y ' k = i j Y k y i 1 ,
M 2 = k = i j Y k y g x g + Y ' k = i j Y k y j + 1 x j + 1 k = i j Y k y g + Y ' k = i j Y k y j + 1 k = i j Y k y g y g + Y ' k = i j Y k y j + 1 y j + 1 k = i j Y k y g + Y ' k = i j Y k y j + 1 .
B = 255 × ( L B M ) a ,

Metrics