Abstract

By spectrally and temporally reshaping the gain-window of a traveling-wave semiconductor optical amplifier (TWSOA) with a backward injected multi- or single-wavelength inverse-optical-comb, we theoretically and experimentally investigate the dynamic frequency chirp of the all-optical 10GBit/s Return-to-Zero (RZ) data-stream format-converted from the TWSOA under strong cross-gain depletion scheme. The multi-wavelength inverse-optical-comb injection effectively depletes the TWSOA gain spectrally and temporally, remaining a narrow gain-window and a reduced spectral linewidth and provide a converted RZ data with a smaller peak-to-peak frequency chirp of 6.7 GHz. Even at high inverse-optical-comb injection power and highly biased current condition for improving the operational bit-rate, the chirp of the multi-wavelength-injection converted RZ pulse is still 2.1-GHz smaller than that obtained by using single-wavelength injection at a cost of slight pulsewidth broadening by 1 ps.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Norte and A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
    [CrossRef]
  2. A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
    [CrossRef]
  3. L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
    [CrossRef]
  4. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, "Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror," J. Lightwave Technol. 23, 834-841 (2005).
    [CrossRef]
  5. G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward inverse-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
    [CrossRef] [PubMed]
  6. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
    [CrossRef]
  7. G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
    [CrossRef]
  8. G. P. Agrawal and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifiers," Opt. Lett. 14, 500-502 (1989).
    [CrossRef] [PubMed]
  9. G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  10. G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
    [CrossRef]
  11. T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
    [CrossRef]
  12. A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
    [CrossRef]
  13. H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
    [CrossRef]
  14. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

2007 (1)

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

2006 (2)

G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward inverse-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
[CrossRef] [PubMed]

G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
[CrossRef]

2005 (1)

2003 (1)

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

2001 (1)

A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
[CrossRef]

1999 (1)

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

1998 (1)

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

1996 (2)

D. Norte and A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

1995 (1)

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

1993 (1)

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

1989 (2)

G. P. Agrawal and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifiers," Opt. Lett. 14, 500-502 (1989).
[CrossRef] [PubMed]

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

G. P. Agrawal and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifiers," Opt. Lett. 14, 500-502 (1989).
[CrossRef] [PubMed]

Baby, B. C.

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Betti, S.

A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
[CrossRef]

Chang, Y.-C.

G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
[CrossRef]

G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward inverse-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
[CrossRef] [PubMed]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

Feng, M.

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

Glesk, V.

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Holonyak, N.

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

James, A.

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

Jeong, J.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

Kim, Y.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

Kim, Y. J.

Koga, M.

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

Lee, C. G.

Lee, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

Lee, H. J.

Lin, G.-R.

G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward inverse-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
[CrossRef] [PubMed]

G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
[CrossRef]

Lugli, P.

A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

Norte, D.

D. Norte and A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[CrossRef]

Olesen, D. S.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

G. P. Agrawal and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor laser amplifiers," Opt. Lett. 14, 500-502 (1989).
[CrossRef] [PubMed]

Park, C. S.

Park, C.-S.

Prucnal, I.

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Reale, A.

A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
[CrossRef]

Sakaida, N.

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

Shieh, W.

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

Storkfelt, N.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

Walter, G.

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

Wang, L. X.

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

Watanable, T.

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

Willner, A. E.

D. Norte and A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[CrossRef]

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

Yamaguchi, M.

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

Yasaka, H.

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

Yoon, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

Yu, K.-C.

G.-R. Lin, K.-C. Yu, and Y.-C. Chang, "10 Gbit/s all-optical non-return-to-zero to return-to-zero data format conversion based on a backward inverse-optical-comb injected semiconductor optical amplifier," Opt. Lett. 31, 1376-1378 (2006).
[CrossRef] [PubMed]

G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

G.-R. Lin, K.-C. Yu and Y.-C. Chang, "All-optical pulse data generation in a semiconductor optical amplifier gain-controlled by a reshaped optical clock injection," Appl. Phys. Lett.,  88, 191114 (2006).
[CrossRef]

G. Walter, A. James, N. Holonyak, Jr., and M. Feng, "Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement," Appl. Phys. Lett. 90, 091109 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Lee, H. Yoon, Y. Kim, and J. Jeong, "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA’s," IEEE J. Quantum Electron. 35, 1213-1219 (1999).
[CrossRef]

G. P. Agrawal and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

A. Reale, P. Lugli, and S. Betti, "Format conversion of optical data using four-wave mixing in semiconductor optical amplifiers," IEEE J. Select. Topics Quantum Electron. 7, 703-709 (2001).Q1
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. X. Wang, B. C. Baby, V. Glesk, and I. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003).
[CrossRef]

D. Norte and A. E. Willner, "Demonstration of an all-optical data format transparent WDM-to-TDM network node with extinction ratio enhancement for reconfigurable WDM networks," IEEE Photon. Technol. Lett. 8, 715-717 (1996).
[CrossRef]

N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, and K. E. Stubkjaer, "Measurements of carrier lifetime and linewidth enhancement factor for 1.5-mm ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 5, 657-660 (1993).

T. Watanable, N. Sakaida, H. Yasaka, and M. Koga, "Chirp control of an optical signal using phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 1027-1029 (1998).
[CrossRef]

J. Lightwave Technol. (3)

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 6, 942-954 (1996).
[CrossRef]

C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, "Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror," J. Lightwave Technol. 23, 834-841 (2005).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup. Amp.: amplifier.; ATT.: optical attenuator; DSO: digital sampling oscilloscope; EDFA: erbium doped fibre amplifier; OBPF: optical band-pass filter; OC: optical circulator; PC: polarization controller; PPG: PRBS pattern generator; TL: tunable laser. Electrical path: solid line. Optical path: dash line.

Fig. 2.
Fig. 2.

Simulation of the transient power gain, G(τ), of TWSOA backward injected by inverse-optical-comb at different small-signal gain conditions.

Fig. 3.
Fig. 3.

Simulation of the dynamic frequency chirp induced by the backward inverse-optical-comb injected TWSOA at different small-signal gain conditions.

Fig. 4.
Fig. 4.

Temporal traces of (a) multi-wavelength inverse-optical-comb and (b) converted RZ signal, (c) and (d) are corresponding chirps at injected powers of 16.5 dBm (solid) and 2.4 dBm (dashed).

Fig. 5.
Fig. 5.

Temporal traces of (a) single-wavelength inverse-optical-comb and (b) converted RZ signal, (c) and (d) are corresponding chirps at injected powers of 16.5 dBm (solid) and 2.4 dBm (dashed).

Fig. 6.
Fig. 6.

Gain and chirp of the RZ data converted by single- and multi-wavelength inverse-optical -comb injection versus injection power.

Fig. 7.
Fig. 7.

FWHM and chirp of the RZ data converted by single- and multi-wavelength inverse-optical -comb injection versus injection power.

Fig. 8.
Fig. 8.

The gain spectrum of TWSOA at different bias currents.

Fig. 9.
Fig. 9.

Injection-power dependent chirp vs. TWSOA biased currents of RZ data under single- (dashed) and multi-wavelength (solid) inverse-optical-comb injection.

Fig. 10.
Fig. 10.

BER performance of the back-to-back NRZ (blue circle) and the TWSOA converted RZ under DFBLD (black square) and FPLD (red diamond) based inverse-optical-comb injection.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

A z + 1 v g A t = 1 2 ( 1 e ) gA ,
A z t = P out z t e z t
g λ n = Γ a ( n n 0 ) [ 1 + ( λ λ 0 ) 2 ( Δ λ g ) 2 ] ,
dn = I eV n τ c g A 2 hv 0 V = I eV n τ c g P out ( τ ) hv 0 V ,
dg = g 0 g τ c gP out ( τ ) E sat L ,
h ( τ ) = 0 L g z τ dz
P out ( τ ) = P in ( τ ) e h P in ( τ ) G ( τ ) .
dh = g 0 L h τ c P in ( τ ) E sat ( e h 1 )
P in ( τ ) = E in τ 0 π [ 1 exp ( τ 2 τ 0 2 ) ] ,
G ( τ ) = e h ( τ ) = exp { g 0 0 π 2 τ c exp ( τ 0 2 4 τ c 2 τ τ c ) erf ( τ 0 2 τ c τ τ 0 ) } .
Δ v = 1 2 π
= 1 2 π { 1 2 α e [ Γ v g a ( n n 0 ) 1 τ c ] }
= α e 4 πP 0 ( dP ( τ ) R sp )
= α e 4 π e g 0 0 π 2 τ c e τ 0 2 4 τ c 2 τ τ c erf ( τ 0 2 τ c τ τ 0 ) [ g 0 L τ 0 π e τ 0 2 4 τ c 2 τ τ c erf ( τ 0 2 τ c τ τ 0 ) 2 τ c 2 + g 0 Le τ 0 2 4 τ c 2 τ τ c ( τ 0 2 τ c τ τ 0 ) 2 τ c ]
= α e 4 π P in E sat e P in E sat f 1 ( τ ) [ f 1 ( τ ) τ c + f 2 ( τ ) ]
dg λ n d Δ λ g = 2 Γ a ( n n 0 ) ( λ λ 0 ) 2 [ ( Δλ g ) 3 + ( λ λ 0 ) 2 Δλ g ] > 0 .
d Δ v dP in = dC 0 P in E sat e P in E sat f 1 ( τ ) dP in 0 ,

Metrics