Abstract

Filamentation is an efficient way to produce an intense and spectrally broad, but poorly stable, source for coherent control spectroscopy. We first described both theoretically and experimentally the filamentation and broadening of a 410 nm ultrashort laser pulse in Argon. By observing the theoretical and experimental spectral cross-correlation in the filament, we then show that the stability of the source can be improved. The Signal-to-Noise Ratio of the intensity inside the filament is increased up to 7 dB by its spectral filtering which provide a low noise broad spectrum source.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
    [CrossRef] [PubMed]
  2. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
    [CrossRef]
  3. F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
    [CrossRef]
  4. V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005).
    [CrossRef] [PubMed]
  5. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  6. J. P. Ogilvie, D. Dbarre, X. Solinas, J. L. Martin, E. Beaurepaire, M. Joffre, Use of coherent control for selective two-photon fluorescence microscopy in live organisms, Opt. Express 14 (2), 759–766 (2006).
    [CrossRef] [PubMed]
  7. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
    [CrossRef] [PubMed]
  8. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
    [CrossRef]
  9. S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
    [CrossRef]
  10. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
    [CrossRef]
  11. F. G. Omenetto, B. P. Luce, A. J. Taylor, Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers, J. Opt. Soc. Am. B, 16, 2005–2009 (1999).
    [CrossRef]
  12. Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on
  13. C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
    [CrossRef]
  14. A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007).
    [CrossRef]
  15. G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
    [CrossRef]
  16. S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
    [CrossRef]
  17. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
    [CrossRef] [PubMed]
  18. S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
    [CrossRef]
  19. L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
    [CrossRef] [PubMed]
  20. T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
    [CrossRef]
  21. E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
    [CrossRef]
  22. M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
    [CrossRef]
  23. H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
    [CrossRef]
  24. M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974).
    [CrossRef]
  25. A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
    [CrossRef]
  26. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.
  27. A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
    [CrossRef]
  28. E. R. Peck, D. J. Fischer, Dispersion of argon, J. Opt. Soc. Am. 54, 1362–1364 (1964).
    [CrossRef]
  29. V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985).
    [CrossRef] [PubMed]
  30. Y. P. Raizer, Plasma physics, Springer, Berlin, Plasma Physics (1994).
  31. A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002).
    [CrossRef] [PubMed]
  32. S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003).
    [CrossRef]
  33. T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
    [CrossRef]
  34. P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
    [CrossRef]
  35. P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
    [CrossRef]

2007

A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007).
[CrossRef]

S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

2006

J. P. Ogilvie, D. Dbarre, X. Solinas, J. L. Martin, E. Beaurepaire, M. Joffre, Use of coherent control for selective two-photon fluorescence microscopy in live organisms, Opt. Express 14 (2), 759–766 (2006).
[CrossRef] [PubMed]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
[CrossRef]

2005

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005).
[CrossRef] [PubMed]

2004

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

2003

S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

2002

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
[CrossRef]

A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002).
[CrossRef] [PubMed]

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

2001

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

2000

A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1999

E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
[CrossRef]

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

F. G. Omenetto, B. P. Luce, A. J. Taylor, Genetic algorithm pulse shaping for optimum femtosecond propagation in optical fibers, J. Opt. Soc. Am. B, 16, 2005–2009 (1999).
[CrossRef]

1998

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

1996

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

1994

L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
[CrossRef] [PubMed]

1985

V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985).
[CrossRef] [PubMed]

1974

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

1964

Ackermann, R.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

Andre, Y. B.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Bartelt, A.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Beaurepaire, E.

Bejot, P.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

Berge, L.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003).
[CrossRef]

A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002).
[CrossRef] [PubMed]

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

Biegert, J.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Boivin, L.

L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
[CrossRef] [PubMed]

Bonnaud, G.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Boutou, V.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Brabec, T.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Brixner, T.

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Buckup, T.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Champeaux, S.

S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003).
[CrossRef]

Cheng, Z.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Chin, S. L.

S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
[CrossRef]

Chiron, A.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Couairon, A.

A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002).
[CrossRef] [PubMed]

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

Coudreau, S.

S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
[CrossRef]

Courvoisier, F.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Damrauer, N. H.

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Dantus, M.

V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Dbarre, D.

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Ehrhardt, H.

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

Feit, M. D.

M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

Ferencz, K.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Fischer, D. J.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.

Fleck, J. A.

M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

Franco, M.

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Frey, S.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Friberg, S. R.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Gerber, G.

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Gisin, N.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Hauri, C. P.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Haus, H. A.

L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
[CrossRef] [PubMed]

Heinrich, A.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Helbing, F. W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Joffre, M.

Jung, K.

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

Kaplan, D.

S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
[CrossRef]

Kartner, F. X.

L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
[CrossRef] [PubMed]

Kasparian, J.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Keller, U.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Kh, Hesselba.

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

Kiefer, B.

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

Knoll, L.

E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
[CrossRef]

Konig, F.

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

Kornelis, W.

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

Korolkova, N.

T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
[CrossRef]

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

Krausz, F.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Lamouroux, B.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Lange, R.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Leuchs, G.

T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
[CrossRef]

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

Levanon, A.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

Liu, W.

S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
[CrossRef]

Lozovoy, V. V.

V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Luce, B. P.

Machida, S.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

Martin, J. L.

Mejean, G.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Mizrahi, V.

V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985).
[CrossRef] [PubMed]

Mlejnek, M.

M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Moloney, J. V.

M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Mondelain, D.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Motzkus, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Mukai, T.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

Mysyrowicz, A.

A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

Mysy-rowicz, A.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Ogilvie, J. P.

Omenetto, F. G.

Opatrny, T.

T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
[CrossRef]

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Peck, E. R.

Prade, B.

A. Couairon, S. Tzortzakis, L. Berge, M. Franco, B. Prade, A. Mysyrowicz, Infrared femtosecond light filaments in air: simulations and experiments, J. Opt. Soc. Am. B 19, 1117–1131 (2002).
[CrossRef]

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.

Rabitz, H.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Raizer, Y. P.

Y. P. Raizer, Plasma physics, Springer, Berlin, Plasma Physics (1994).

Riazuelo, G.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Ripoche, J. F.

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Roth, M.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Salmon, E.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Schmidt, E.

E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
[CrossRef]

Schubert, E.

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

Shelton, D. P.

V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985).
[CrossRef] [PubMed]

Sizmann, A.

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

Skupin, S.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

Solinas, X.

Spalter, S.

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

Spielman, C.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Taylor, A. J.

Tempea, G.

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.

Thberge, F.

S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
[CrossRef]

Tournois, P.

S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
[CrossRef]

Tzortzakis, S.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Weiner, A.M.

A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Welsch, D. G.

E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
[CrossRef]

Werner, M. J.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

Wille, H.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Willmann, K.

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

Wolf, J. P.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Wood, V.

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Woste, L.

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Wright, E. M.

M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

Yu, J.

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

Appl. Phys. B

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, A. Gehner, Micromirror SLM for femtosecond pulse shapiing in the ultraviolet, Appl. Phys. B, 76, 711–714 (2003).
[CrossRef]

C. P. Hauri, W. Kornelis, F. W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation, Appl. Phys. B 79, 673–677 (2004)
[CrossRef]

G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J. P. Wolf, L. Berge, S. Skupin, Uv-supercontinuum generated by femtosecond pulse filamentation in air: Meter-range experiments versus numerical simulations, Appl. Phys. B, 82, 341–345 (2006).
[CrossRef]

S. L. Chin, F. Thberge, W. Liu, Filamentation nonlinear optics, Appl. Phys. B 86, 477–483 (2007).
[CrossRef]

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, J. P. Wolf, Spectral correlation and noise reduction in laser filaments, Appl. Phys. B 87, 1–4 (2007).
[CrossRef]

Appl. Phys. Lett.

P. Bejot, J. Kasparian, E. Salmon, R. Ackermann, N. Gisin, J. P. Wolf, Laser noise reduction in air, Appl. Phys. Lett. 88, 251112 (2006).
[CrossRef]

M. D. Feit, J. A. Fleck, Effect of refraction on spot-size dependence of laser-induced breakdown, Appl. Phys. Lett. 24, 169–172 (1974).
[CrossRef]

F. Courvoisier, V. Boutou, V. Wood, A. Bartelt, M. Roth, H. Rabitz, J. P. Wolf, Femtosecond laser pulses distinguish bacteria from background urban aerosols, Appl. Phys. Lett. 87, 063901 (2005).
[CrossRef]

Chemphyschem

V. V. Lozovoy, M. Dantus, Coherent control in femtochemistry, Chemphyschem 6, 1970–2000 (2005).
[CrossRef] [PubMed]

Eur. Phys. J D

A. Chiron, B. Lamouroux, R. Lange, J. F. Ripoche, M. Franco, B. Prade, G. Bonnaud, G. Riazuelo, A. Mysy-rowicz, Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases, Eur. Phys. J D 6, 383–396 (1999).
[CrossRef]

Eur. Phys. J: Appl. Phys.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, L. Woste, Teramobile: A mobile femtosecond-terawatt laser and detection system, Eur. Phys. J: Appl. Phys. 20, 183–190 (2002).
[CrossRef]

J. Chem. Phys.

T. Brixner, N. H. Damrauer, B. Kiefer, G. Gerber, Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies, J. Chem. Phys. 118, 3692–3701 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. B

H. Ehrhardt, Hesselba. Kh, K. Jung, E. Schubert, K. Willmann, Electron-impact ionization of argon -measurements of triple differential cross-sections, J. Phys. B 7, 69–78 (1974).
[CrossRef]

J. Phys. Chem. A

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, Multiphoton intrapulse interference 3: Probing microscopic chemical environments, J. Phys. Chem. A 108, 53–58 (2004).
[CrossRef]

Nature

T. Brixner, N. H. Damrauer, P. Niklaus, G. Gerber, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414, 57–60 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

S. Coudreau, D. Kaplan, P. Tournois, Ultraviolet acousto-optic programmable dispersive filter laser pulse shaping in KDP, Opt. Lett. 12, 1899–1901 (2006).
[CrossRef]

Phys. Rep.

A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep. 441, 47–189 (2007).
[CrossRef]

Phys. Rev. A

T. Opatrny, N. Korolkova, G. Leuchs, Mode structure and photon number correlations in squeezed quantum pulses, Phys. Rev. A 66, 053813 (2002).
[CrossRef]

E. Schmidt, L. Knoll, D. G. Welsch, Cumulant expansion for studying damped quantum solitons, Phys. Rev. A 59, 2442–2457 (1999).
[CrossRef]

Phys. Rev. E

M. Mlejnek, E. M. Wright, J. V. Moloney, Femtosecond pulse propagation in argon: A pressure dependence study, Phys. Rev. E 58, 4903–4910 (1998).
[CrossRef]

S. Champeaux, L. Berge, Femtosecond pulse compression in pressure-gas cells filled with argon, Phys. Rev. E 68, 066603 (2003).
[CrossRef]

Phys. Rev. Lett.

A. Couairon, L. Berge, Light filaments in air for ultraviolet and infrared wavelengths, Phys. Rev. Lett. 88, 135003 (2002).
[CrossRef] [PubMed]

V. Mizrahi, D. P. Shelton, Dispersion of nonlinear susceptibilities of Ar, N2, and O2 measured and compared, Phys. Rev. Lett. 55, 696–699 (1985).
[CrossRef] [PubMed]

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, T. Mukai, Observation of optical soliton photon-number squeezing, Phys. Rev. Lett. 77, 3775–3778 (1996).
[CrossRef] [PubMed]

S. Spalter, N. Korolkova, F. Konig, A. Sizmann, G. Leuchs, Observation of multimode quantum correlations in fiber optical solitons, Phys. Rev. Lett. 81, 786–789 (1998).
[CrossRef]

L. Boivin, F. X. Kartner, H. A. Haus, Analytical solution to the quantum-field theory of self-phase modulation with a finite response-time, Phys. Rev. Lett. 73, 240–243 (1994).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Science

J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysy-rowicz, R. Sauerbrey, J. P. Wolf, L. Woste, White-light filaments for atmospheric analysis, Science 301, 61–64 (2003).
[CrossRef] [PubMed]

Other

Z. Cheng, G. Tempea, T. Brabec, K. Ferencz, C. Spielman, F. Krausz, Generation of Intense Diffraction-Limited White Light and 4-fs Pulses, Lasers and Electro-Optics Europe, 1998. 1998 CLEO/Europe. Conference on

Y. P. Raizer, Plasma physics, Springer, Berlin, Plasma Physics (1994).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical recipies, Cambridge University Press, Cambridge, Numerical Recipies, 1989.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Time-Space representation of the electric field intensity focused by a 75 cm focal lens. The initial energy was set at 135 μJ and the duration at 150 fs. The Argon cell pressure was 5bar. It has been plotted for several distances which are relevant in the filamentation process. The beam is first focused and when the intensity reaches about 6.5 1013 W.cm -2, the plasma defocuses the trailing part of the pulse (78 cm). If the energy is sufficient, the trailing part focuses again, forming a subpulse (80 cm). In the last part of the filamentation process, several subpulses was created (99 cm).

Fig. 2.
Fig. 2.

Left: Time-dependent intensity at the center the pulse for z=82 cm and z=90 cm. At the beginning of the filamentation process (a), the pulse is divided into two subpulses. Then (c), several subpulses are formed. Right: Radial-dependent intensity of the pulse for z=82 cm and z=90 cm. The FWHM radius is about 80 μm

Fig. 3.
Fig. 3.

Left: Maximal intensity inside the core of the filament (W.cm -2). The Argon cell pressure was 5 bar. The inside filament core intensity is clamped at about 6.5 1013 W.cm -2. Right: Maximal plasma density inside the filament (e - cm -3). The oscillations observed are inherent to the non linear propagation: as soon as the plasma density reaches its maximum, the filament intensity decreases because the plasma defocuses the beam.

Fig. 4.
Fig. 4.

Left: quadratic radius calculated as (Eq.3). This radius takes into account the filament bath which increases the total quadratic radius (≃ 300 μm). Right: FWHM radius: The filament core diameter is about 80 μm.

Fig. 5..
Fig. 5..

(a) Theoretical spectra of the filament after propagation in Argon for different pressures. The shape and broadness of the spectrum can therefore be controlled by adjusting the pressure. (b)Experimental spectra broadened by self-phase modulation for various argon pressures. The energy was set at 150 μJ. The higher is the pressure, the broader would be the spectrum. At relatively high pressure, oscillations also appear in spectra, in good agreement with calculations.

Fig. 6.
Fig. 6.

In each square: up, the spatio-temporal dependencies of the intensity for several distances, down, the corresponding Wigner plot of the pulse. At the end of the filamentation process, the electric field is chirped by 2 fs 2 .

Fig. 7.
Fig. 7.

Correlation map for two different pressures. Solid line corresponds to couples of wavelengths (ω 1,ω 2) which satisfy 2ω 0 = ω 1 + ω 2 (6). Left: in the low pressure regime (P = 2 bar), the highest correlation is reached for wavelengths couples which satisfy (6). Right: in the higher pressure regime (P = 5 bar), oscillations appear in the correlation map which is a characteristic of cascading processes. The highest correlations do not correspond anymore to wavelengths couples which satisfy (6): initial correlations are partly lost.

Fig. 8.
Fig. 8.

(a). Correlation measurements setup up: the second harmonic of a Ti:Sa laser pulse (at 410 nm) is focused in a cell filled with argon. During its self-channeled propagation in the cell, its spectrum is broadened by self phase modulation. The scattering of broadened pulses on a neutral target is collected on a spectrometer via an optical fiber. Cross-correlations C12) are then calculated for several argon pressure to retrieve correlations maps. (b) Noise reduction setup: in that case, after their propagation, laser pulses are dispersed onto a grating before entering a spectral filtering setup composed of an adjustable iris in the Fourier plane of two cylindrical lenses. The filtered broaden spectrum (collected on PMT2) is then compared to a sample of the input spectrum (PMT1) in order to observe noise reduction as a function of the argon pressure in the cell.

Fig. 9.
Fig. 9.

Experimental cross-correlation maps as a function of argon pressure for an input pulse energy of 275 μJ. Before propagation (Reference), only positive correlations are observed for fundamental wavelengths (consistent with initial overall coherent fluctuations on the incident intensity). After propagation, for low pressure (2 bar), additional positive correlations are observed for conjugated wavelengths (pairs of photons) whereas negative correlations appear between these wavelengths and input wavelengths annihilated in the χ3 process. At even higher pressure (5 bar), cascading events occur (visible through additional strips) which blur the reading of cross-correlation maps.

Fig. 10.
Fig. 10.

Histograms of the fluctuations on the pulse intensities before (channel 1) and after (channel 2) propagation in a cell filled with 2 bar of argon gas. The average energy was set at 275 μJ. Statistic on 2000 laser shots. (a) Histogram made with no filtering applied. No noise reduction is observed. (b) The same experiment made with a [406 nm–414 nm] filter. An increase of 7 dB on the SNR is clearly visible on Channel 2.

Fig. 11.
Fig. 11.

Statistics on the intensities after propagation (S 2) for a large panel of input intensities (S 1) at several argon pressures. The average energy was set at 120 μJ. At low pressure (2 bar), an increase of the input intensity is correlated to a similar linear increase in the intensity after propagation. At higher pressure, the behavior can be divided in 3 intensity regions. In the low intensity case (region I), the power is too low to create many pairs of conjugated photon and induce a significant noise reduction on the input wavelengths. The intermediate input intensities case (region II) is the region where noise reduction is the highest. For a fluctuation δS 1 on the input intensity, a reduction of about 5 is observed on δS 2. In region III (high intensity cases), noise reduction is lost because cascaded events start to add wavelengths to the broadening.

Tables (1)

Tables Icon

Table 1. Physical parameters used in the model (p accounts for the relative gas pressure: p = p 1 bar .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

z ε = i 2 k 0 Δ 2 ε i k 2 t 2 ε + ik 0 n 2 n 0 ε 2 ε ik 0 2 n 0 2 ρ c ρε 1 2 σρε β K 2 ε 2 K 2 ε
t ρ = σ K ( 1 ρ ρ at ε 2 K ) + σ U i ρ ε 2 αρ 2
ε r t 0 = 2 P in πw 0 2 exp ( r 2 w 0 2 ( 1 + iC ) t 2 τ p 2 + i k 0 r 2 2 f )
R quad = r 2 ( ε r t 2 dt ) dr ε r t 2 dtdr
W t ω = E ( ω + Ω 2 ) E * ( ω Ω 2 ) e i Ω t d Ω
Φ ( t ) = k 0 z ω 0 t = ( n c z t ) ω 0 = ( ( n 0 + n 2 I ( t ) ρ 2 n 0 ρ c ) z c t ) ω 0
ω ( t ) = t Φ = ( n 2 t I + 1 2 n 0 ρ c t ρ + 1 ) ω 0 z c
σ 2 ( I ) = cov ( I ( λ 1 ) , I ( λ 2 ) ) 1 2
C th ( λ 1 , λ 2 ) = Cov ( I ( λ 1 ) , I ( λ 2 ) ) Cov ( I ( λ 1 ) , I ( λ 1 ) ) Cov ( I ( λ 2 ) , I ( λ 2 ) )
Cov I ( λ 1 ) , I ( λ 2 ) ) = E ( [ I ( λ 1 , z ) I ̄ ( λ 1 ) ] [ I ( λ 2 , z ) I ̄ ( λ 1 ) ] )
I ̄ ( λ i ) = 0 L tot I ( λ i , z ) dz L tot
C exp ( λ 1 , λ 2 ) = V ( n 1 + n 2 ) ( V ( n 1 ) + V ( n 2 ) ) 2 V ( n 1 ) V ( n 2 )

Metrics