Abstract

We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
    [CrossRef]
  2. J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
    [CrossRef]
  3. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
    [CrossRef] [PubMed]
  4. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
    [CrossRef]
  5. N. J. Doran and D. Wood, "Non-linear optical loop mirror," Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  6. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, "Nonlinear amplifying loop mirror," Opt. Lett. 15, 752-754 (1990).
    [CrossRef] [PubMed]
  7. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
    [CrossRef]
  8. D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
    [CrossRef]
  9. J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990).
    [CrossRef]
  10. I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1
  11. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, "Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 m," Opt. Lett. 21, 1966-1968 (1996).
    [CrossRef] [PubMed]
  12. M. A. Newhouse, D. L. Weidman, and D. W. Hall, "Enhanced-nonlinearity single-mode lead silicate optical fiber," Opt. Lett. 15, 1185-1187 (1990).
    [CrossRef] [PubMed]
  13. M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
    [CrossRef]
  14. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1," in OFC2004 PDP26 (Los Angeles, CA, 2004).

2005

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

2004

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

2002

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

1997

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

1996

1993

M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

1991

D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
[CrossRef]

1990

1988

Asobe, M.

M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

Baby, V.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

Belardi, W.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Boskovic, A.

Bres, C.-S.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

Chernikov, S. V.

Cvecek, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Deng, K.-L.

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

Doran, N. J.

Fejer, M. M.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Fermann, M. E.

Glesk, I.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

Gruner-Nielsen, L.

Haberl, F.

Hall, D. W.

Hamanaka, T.

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

Hochreiter, H.

Hofer, M.

Ibsen, M.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Jiang, Z.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Kanamori, T.

M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

Kang, K. I.

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

Kitayama, K.

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

Kubodera, K.

M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

Laming, R. I.

D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
[CrossRef]

Langrock, C.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Leaird, D. E.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Lee, J. H.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Leuchs, G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Levring, O. A.

Meissner, M.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Monro, T. M.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Newhouse, M. A.

Payne, D. N.

D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
[CrossRef]

Prucnal, P. R.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

Rand, D.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

Richardson, D. J.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
[CrossRef]

Roussev, R. V.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Salehi, J. A.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

Schmauss, B.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Seo, D. S.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Sponsel, K.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Striegler, A. G.

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

Taylor, J. R.

Teh, P. C.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Wada, N.

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

Wang, X.

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

Weidman, D. L.

Weiner, A. M.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

Wood, D.

Xu, L.

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

Yang, S.-D.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

Yusoff, Z.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Acta Physica Slovaca

I. Glesk, V. Baby, C.-S. Bres, L. Xu, D. Rand, and P. R. Prucnal, "Experimental demonstration of 2.5 Gbit/s incoherent two-dimensional optical code division multiple access system," Acta Physica Slovaca 54, 245-250 (2004).Q1

IEEE J. Quantum Electron.

M. Asobe, T. Kanamori, and K. Kubodera, "Applications of highly nonlinear chalcogenide glass fibers inultrafast all-optical switches," IEEE J. Quantum Electron. 29, 2325-2333 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, "Unbalanced TOAD for Optical Data and Clock Separation in Self-Clocked Transparent OTDM Networks," IEEE Photon. Technol. Lett. 9, 830-832 (1997).
[CrossRef]

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, "A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement," IEEE Photon. Technol. Lett. 14, 876-878 (2002).
[CrossRef]

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing," IEEE Photon. Technol. Lett. 16, 1778-1780 (2004).
[CrossRef]

A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, "NOLM-based RZ-DPSK signal regeneration," IEEE Photon. Technol. Lett. 17, 639-641 (2005).
[CrossRef]

J. Lightwave Technol.

J. A. Salehi, A. M. Weiner, and J. P. Heritage, "Coherent ultrashort light pulse code-division multiple access communication systems," J. Lightwave Technol. 8, 478-491 (1990).
[CrossRef]

Opt. Lett.

Optics Express

X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, "Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system," Optics Express 13, 5499-5505 (2005).
[CrossRef] [PubMed]

Proceedings of SPIE

D. J. Richardson, R. I. Laming, and D. N. Payne, "Switching and passive mode-locking of fibre lasers using nonlinear loop mirrors," Proceedings of SPIE 1581, 26-39 (1991).
[CrossRef]

Other

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1," in OFC2004 PDP26 (Los Angeles, CA, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup: FC – fiber coupler, NL – nonlinearity (fiber), PC – polarization controller, TI – tunable isolator. Thickness of arrows indicates the relative optical power.

Fig. 2.
Fig. 2.

The measured transfer function. Straight line shows maximum possible output power — the case of perfect in-phase interference. Inset shows the close view of a low power part.

Fig. 3.
Fig. 3.

The measured transfer function in logarithmic coordinates for mode-locked laser at two different repetition rates and for the modulated CW laser.

Fig. 4.
Fig. 4.

Thresholding at a single wavelength. A – original signal; B – thresholded signal; C – cubic law transformation of the original signal.

Fig. 5.
Fig. 5.

Thresholding of broadband optical CDMA signal. A – original autocorrelation peak and cross-correlation; B – thresholded signal; C – thresholding with the polarization scrambler.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P out = P in k k + δ e i ( φ e + φ NL ) 2 =
= P in [ 2 k + δ 2 k ( k + δ ) cos ( φ e + φ NL ) ] .
P out = P in [ k φ NL 2 + 2 k φ NL φ e + k φ e 2 + δ 2 4 k ] .
P out = k Γ 2 P in 3 + 2 k Γ φ e P in 2 + ( k φ e 2 + δ 2 4 k ) P in .

Metrics