Abstract

Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. P. Yao, G. Schneider, D. Prather, E. Wetzel and D. O’Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithogrpahy," Opt. Express 13, 2370-2376 (2005).
    [CrossRef]
  4. J. G. Fleming and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999).
    [CrossRef]
  5. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
    [CrossRef] [PubMed]
  6. M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
    [CrossRef] [PubMed]
  7. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
    [CrossRef]
  8. A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
    [CrossRef]
  9. C. Lopez "Three dimensional photonic band gap materials: semiconductors for light," J. Opt. A: Pure Appl. Opt. 8, R1-R14 (2006).
    [CrossRef]
  10. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1985).
  11. K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).
  12. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
    [CrossRef]
  13. P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
    [CrossRef]
  14. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
    [CrossRef]
  15. B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
    [CrossRef] [PubMed]
  16. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
    [CrossRef]
  17. R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
    [CrossRef]
  18. B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
    [CrossRef]
  19. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  20. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
    [CrossRef] [PubMed]
  21. G. Subramania and S. Y. Lin. "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 74, 5037-5039 (2004).
    [CrossRef]
  22. M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
    [CrossRef] [PubMed]
  23. A. S. P. Chang, Y. S. Kim, M. Chen, Z. P. Yang, J. A. Bur, S. Y. Lin, K. M. Ho, "Visible three-dimensional metallic photonic crystals with non-localized propagation modes beyond waveguide cutoff," Opt. Express 15, 8428-8437 (2007).
    [CrossRef]
  24. A. Fiegel and B. Sfez, "Overlapped woodpile photonic crystals," Appl. Opt. 43, 793-795 (2004)..
    [CrossRef]
  25. R. Rabady and I. Avrutsky, "Titania, silicon dioxide, and tantalum pentaoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing," Appl. Opt. 44, 378-383 (2005).
    [CrossRef] [PubMed]
  26. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
    [CrossRef]
  27. G. Subramania, "Planarization of three-dimensional photonic crystals and other multi-level nanoscale structures," Nanotechnology 18, 035303 (2007).
    [CrossRef] [PubMed]
  28. Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
    [CrossRef]
  29. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  30. T. Suzuki and P. K. L. Yu, "Emission power of an electrical dipole in the photonic band structure of the fcc lattice," J. Opt. Soc. Am. B 12, 570-581 (1995).
    [CrossRef]

2007 (1)

2006 (2)

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

C. Lopez "Three dimensional photonic band gap materials: semiconductors for light," J. Opt. A: Pure Appl. Opt. 8, R1-R14 (2006).
[CrossRef]

2005 (4)

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

R. Rabady and I. Avrutsky, "Titania, silicon dioxide, and tantalum pentaoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing," Appl. Opt. 44, 378-383 (2005).
[CrossRef] [PubMed]

P. Yao, G. Schneider, D. Prather, E. Wetzel and D. O’Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithogrpahy," Opt. Express 13, 2370-2376 (2005).
[CrossRef]

2004 (5)

A. Fiegel and B. Sfez, "Overlapped woodpile photonic crystals," Appl. Opt. 43, 793-795 (2004)..
[CrossRef]

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

G. Subramania and S. Y. Lin. "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 74, 5037-5039 (2004).
[CrossRef]

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

2003 (1)

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

2002 (1)

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

2001 (1)

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

2000 (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

1999 (4)

P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

J. G. Fleming and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

1998 (3)

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

1987 (2)

E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Avrutsky, I.

Awazu, K.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Biswas, R.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Blanford, C. F.

B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Bo, X-Z.

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

Braun, P. V.

P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
[CrossRef]

Bur, J. A.

Busch, K.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Chan, C. T.

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chang, A. S. P.

Chen, M.

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

Constant, K.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

Darmawikarta, K.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Denning, R.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Deubel, M.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Fiegel, A.

Fleming, J. G.

Freyman, G. V.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Fujimaki, M.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Graugnard, E.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Herman, P. R.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Ho, K. M.

A. S. P. Chang, Y. S. Kim, M. Chen, Z. P. Yang, J. A. Bur, S. Y. Lin, K. M. Ho, "Visible three-dimensional metallic photonic crystals with non-localized propagation modes beyond waveguide cutoff," Opt. Express 15, 8428-8437 (2007).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Holland, B. T.

B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Ibistate, M.

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

Imada, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

Ippen, E.P.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Joannopoulos, J.D.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, P. M.

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

Johnson, S.G.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Juarez, B.

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

Kim, Y. S.

King, J. S.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Koenderink, A. F.

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

Kuriyama, R.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Lidorikis, E.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Lin, S. Y.

Lin, Y.

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

Lopez, C.

C. Lopez "Three dimensional photonic band gap materials: semiconductors for light," J. Opt. A: Pure Appl. Opt. 8, R1-R14 (2006).
[CrossRef]

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

Lopez, J. F. G.

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

Noda, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

Norris, D. J.

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

O’Brien, D.

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

Ohki, Y.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Okano, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

Palacios, J. M.

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

Pereirra, S.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Prather, D.

Qi, M.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Rabady, R.

Rakich, P.T.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Roche, O. M.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Sai, A.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Schneider, G.

Scrimgeour, J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Sfez, B.

Sharp, D. N.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Sigalas, M.

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Sigalas, M. M.

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

Smith, H.

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Stein, A.

B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Sturm, J. C.

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

Subramania, G.

G. Subramania and S. Y. Lin. "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 74, 5037-5039 (2004).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

Summers, C. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Suzuki, T.

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

Turberfield, A. J.

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

Vos, W. L.

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

Wang, X.

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Wegener, M.

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Wetzel, E.

Wijnhoven, J. E. G. J.

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

Wiltzius, P.

P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
[CrossRef]

Yablanovitch, E.

E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

Yang, Z. P.

Yao, P.

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

Yu, P. K. L.

Adv. Mater. (2)

J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006).
[CrossRef]

B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

G. Subramania and S. Y. Lin. "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 74, 5037-5039 (2004).
[CrossRef]

Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001).
[CrossRef]

G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999).
[CrossRef]

Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005).
[CrossRef]

C. R. Phys. (1)

A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

C. Lopez "Three dimensional photonic band gap materials: semiconductors for light," J. Opt. A: Pure Appl. Opt. 8, R1-R14 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J.Vac. Sci. Technol. B (1)

K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).

Nat. Mater. (1)

M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004).
[CrossRef] [PubMed]

Nature (2)

P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999).
[CrossRef]

M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999).
[CrossRef]

Phys. Rev. B. (1)

R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Science (4)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000).
[CrossRef] [PubMed]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004).
[CrossRef] [PubMed]

J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998).
[CrossRef]

B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other (2)

E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1985).

G. Subramania, "Planarization of three-dimensional photonic crystals and other multi-level nanoscale structures," Nanotechnology 18, 035303 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) Band diagram for a woodpile PC where the rods are composed of reactively sputter deposited TiO2 with a refractive index of n =2.3. A complete 3D gap exists between the reduced frequencies of 0.4300 and 0.4462 indicated by the shaded region. The arrows at the X symmetry point indicates the lowest order stop bands along the stacking direction between reduced frequencies of 0.4137 and 0.4865 which is typically observed in near-normal incidence measurements. b) A schematic of the corresponding irreducible Brillouin zone indicating the various symmetry points. c) A schematic of the woodpile lattice with a lattice constant of “a” with each rod of width “d = 0.4a” and unit cell of height “c = √2a”.

Fig. 2.
Fig. 2.

a)Scanning electron microscope(SEM) images of the PC structure shows a cross section of a 4 layer woodpile lattice of TiO2 rods. The lattice constant is 400 nm with each rod 160 nm wide and 110 nm high (magnified region inside the dotted square). The observed waviness in the rods results from a slight over-etching (~ 15%) of each layer to ensure the connectivity of TiO2 network after the low dielectric background material (SiO2) is etched away. b) Top view SEM image of a device with 300 nm lattice constant at 10KV accelerating voltage. The rods are 110 nm wide. The higher energy electrons used to obtain this image are able to penetrate deeper showing the underlying layers that appear in lighter shade (magnified region indicated by dotted square). The different layers are marked with a double arrow. The offset between layer 2 and layer 4 is very close to the ideal value of a/2.

Fig. 3.
Fig. 3.

a) PCs with different lattice constants show characteristic colors which are reflected at the stop bands. Each device is a 80μm × 80μm square region. The colors appear quite uniform over the entire 400nm device and most of the 300nm device (see text for additional explanation). b) Optical reflectance spectrum from the devices obtained by micro-spectrometry with an objective lens with NA of 0.25 giving an incidence angle range of 0 →~ 15°. For the 400nm device we observe a long wavelength feature with a single peak at 670nm with several small peaks riding on a broad feature at shorter wavelengths. The long wavelength feature for the 300nm device is considerably broader with a shallower peak at 620nm which is blue shifted with respect to the 400nm device.

Fig. 4.
Fig. 4.

a) The experimental spectrum (solid line) for the a = 300nm device is plotted along with the spectrum from normal incidence FDTD calculations(dotted line). We find the reduced midgap frequency for the FDTD curve(ωred = 0.508) to be blue shifted by ~ 3% compared to the experimental curve(ωred = 0.492). To facilitate comparison, we define a width for the lower order stopband, as represented by the double arrows for the experi-mental(solid) and FDTD(dotted) spectra, and take the midpoint of the double arrows as the midgap position. The corresponding band diagram along the stacking direction (ΓX〈) is also plotted on the left side. The midgap frequency predicted for this case 0.432 which is ~ 13% red shifted from the measured value. b) Comparison of experimental spectrum with FDTD calculated spectrum for a = 400nm device. The reduced midgap frequency (ωred = 0.590) is within ~ 3%of that predicted by FDTD (ωred = 0.580). The peak reflectance value for the experimental curve is ~ 8% lower than that predicted by FDTD. The band diagram predicted midgap frequency (ωred = 0.546) is red-shifted by ~ 8% from the experimental value.

Metrics