Abstract

Integral floating display is a recently proposed three-dimensional (3D) display method which provides a dynamic 3D image in the vicinity to an observer. It has a viewing window only through which correct 3D images can be observed. However, the positional difference between the viewing window and the floating image causes limited viewing zone in integral floating system. In this paper, we provide the principle and experimental results of the location adjustment of the viewing window of the integral floating display system by modifying the elemental image region for integral imaging. We explain the characteristics of the viewing window and propose how to move the viewing window to maximize the viewing zone.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-W. Min, M. Hahn, J. Kim, and B. Lee, "Three-dimensional electro-floating display system using an integral imaging method," Opt. Express 13, 4358-4369 (2005).
    [CrossRef] [PubMed]
  2. B. Lee, J. Kim, and S.-W. Min, "Integral floating 3D display system: principle and analysis," Three-Dimensional TV, Video, and Display V, Optics East, Boston, MA, USA, Proc. SPIE. 6392, paper 6392-18, Oct. 2006.
  3. J. Kim, Y. Kim, S.-W. Cho, S.-W. Min and B. Lee, "Viewing angle enhancement of an integral imaging system." Society for Information Display 2006 International Symposium Digest of Technical Paper, San Francisco, CA, USA, Vol. 37, book I, 186-189, June 2006.
  4. G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).
  5. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
    [CrossRef]
  6. A. Stern and B. Javidi, "Three-Dimensional Image Sensing and Reconstruction with Time-Division Multiplexed Computational Integral Imaging," Appl. Opt. 42, 7036-7042 (2003).
    [CrossRef] [PubMed]
  7. B. Lee, J.-H. Park, and S.-W. Min, "Three-dimensional display and information processing based on integral imaging," in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed., (Springer, New York, USA, 2006), Chap. 12.
  8. J. S. Jang, F. Jin, and B. Javidi, "Three-dimensional integral imaging with large depth of focus using real and virtual image fields," Opt. Lett. 28, 1421-1423 (2003).
    [CrossRef] [PubMed]
  9. M. Okui, J. Arai, Y. Nojiri, and F. Okano, "Optical screen for direct projection of integral imaging," Appl. Opt. 45, 9132-9139 (2006).
    [CrossRef] [PubMed]
  10. H. Choi, Y. Kim, J.-H. Park, S. Jung, and B. Lee, "Improved analysis on the viewing angle of integral imaging," Appl. Opt. 44, 2311-2317 (2005).
    [CrossRef] [PubMed]
  11. J. Hong, J.-H. Park, J. Kim, and B. Lee, "Analysis of image depth in integral imaging and its enhancement by correction to elemental images," Novel Optical Systems Design and Optimization VII, SPIE Annual Meeting, Proc. SPIE 5524, Denver, Colorado, USA, 387-395, Aug. 2004.
    [CrossRef]
  12. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, "Analysis of viewing parameters for two display methods based on integral photography," Appl. Opt. 40, 5217-5232 (2001).
    [CrossRef]

2006

2005

2003

2001

1999

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

1908

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

Arai, J.

M. Okui, J. Arai, Y. Nojiri, and F. Okano, "Optical screen for direct projection of integral imaging," Appl. Opt. 45, 9132-9139 (2006).
[CrossRef] [PubMed]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Choi, H.

Hahn, M.

Hoshino, H.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Jang, J. S.

Javidi, B.

Jin, F.

Jung, S.

Kim, J.

Kim, Y.

Lee, B.

Lippmann, G.

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

Min, S.-W.

Nojiri, Y.

Okano, F.

M. Okui, J. Arai, Y. Nojiri, and F. Okano, "Optical screen for direct projection of integral imaging," Appl. Opt. 45, 9132-9139 (2006).
[CrossRef] [PubMed]

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Okui, M.

Park, J.-H.

Stern, A.

Yuyama, I.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Appl. Opt.

C. R. Acad. Sci.

G. Lippmann, "La photographic intergrale," C. R. Acad. Sci. 146, 446-451 (1908).

Opt. Eng.

F. Okano, J. Arai, H. Hoshino, and I. Yuyama, "Three-dimensional video system based on integral photography," Opt. Eng. 38, 1072-1077 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. Lee, J. Kim, and S.-W. Min, "Integral floating 3D display system: principle and analysis," Three-Dimensional TV, Video, and Display V, Optics East, Boston, MA, USA, Proc. SPIE. 6392, paper 6392-18, Oct. 2006.

J. Kim, Y. Kim, S.-W. Cho, S.-W. Min and B. Lee, "Viewing angle enhancement of an integral imaging system." Society for Information Display 2006 International Symposium Digest of Technical Paper, San Francisco, CA, USA, Vol. 37, book I, 186-189, June 2006.

J. Hong, J.-H. Park, J. Kim, and B. Lee, "Analysis of image depth in integral imaging and its enhancement by correction to elemental images," Novel Optical Systems Design and Optimization VII, SPIE Annual Meeting, Proc. SPIE 5524, Denver, Colorado, USA, 387-395, Aug. 2004.
[CrossRef]

B. Lee, J.-H. Park, and S.-W. Min, "Three-dimensional display and information processing based on integral imaging," in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed., (Springer, New York, USA, 2006), Chap. 12.

Supplementary Material (1)

» Media 1: AVI (1596 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Geometrical illustration of the viewing region of the integral floating display.

Fig. 2.
Fig. 2.

Geometry for the viewing angle calculation of the integral imaging system.

Fig. 3.
Fig. 3.

Principle of formation of the viewing window.

Fig. 4.
Fig. 4.

Formation of the viewing window in integral imaging system.

Fig. 5.
Fig. 5.

Formation of the viewing window in the proposed design scheme of integral floating display.

Fig. 6.
Fig. 6.

Experimental results of measuring the size of the viewing window of the proposed system, when a is 250mm, 225mm and 200mm respectively from left to right.

Fig. 7.
Fig. 7.

Calculation of the viewing region for the observer when the viewing window is behind the 3D volume.

Fig. 8.
Fig. 8.

Calculation of the viewing region when the viewing window is in front of the 3D volume. (Compare it with Fig. 7.)

Fig. 9.
Fig. 9.

Viewing region calculation while varying the distance between the viewing window and the center of 3D volume in conventional integral floating display (ff =175mm, fi =22mm, φ=10mm, l=80mm, h=50mm, a=200mm, do =1m).

Fig. 10.
Fig. 10.

Viewing region calculation while varying the location of the viewing window (ff =175mm, fi =22mm, φ=10mm, l=80mm, h=50mm, a=200mm, do =1m).

Fig. 11.
Fig. 11.

Experimental setup.

Fig. 12.
Fig. 12.

Experimental results of floating 3D images ((a): by the conventional method, (b): by the proposed method).

Fig. 13.
Fig. 13.

Movie of 3D image constructed by the proposed system [1.7MB]. [Media 1]

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ = { arctan [ φ ( 1 g 1 2 f i ) ] in real mode , arctan ( φ 2 f i ) in virtual mode .
w f = 2 f f tan θ = { φ ( 2 f f g f f f i ) using real mode integral imaging , φ f f f i using virtual mode integral imaging ,
s = φ d g d .
w i = { φd ( 2 d + 1 f i 2 g ) for real mode , φ d f i for virtual mode .
w f = { φ d ( b f f ) f f ( 2 d + 1 f i 2 g ) using real mode integral imaging , φ b f f a ( b f f ) f i f f using virtual mode integral imaging .
u = ( w f h ) d o Δ + l 2 w f .
u = ( w f h ) d o Δ + l 2 + w f .

Metrics