Abstract

We demonstrate that silicate bonding an optical flat to the output facet of an active fiber device can increase the reliability of high-peak power systems and subsantially reduce the effective feedback at the termination of a double-clad fiber. We determine the bonding parameters and conditions that maximize the optical damage threshold of the bond and minimize the Fresnel reflection from the bond. At 1-μm wavelength, damage thresholds greater than 70 J/cm2 are demonstrated for 25-ns pulses. We also measured Fresnel reflections less than -63 dB off the bond. Finally, we determined that the strength of the bond is sufficient for most operating environments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness," Conference on Lasers and Electro-Optics Europe, CLEO/Europe (2005).
  2. C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
    [CrossRef]
  3. N. Bloembergen, "Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surface of transparent dielectrics," Appl. Opt. 12, 661 (1973).
    [CrossRef] [PubMed]
  4. M. Wickham, J. Anderegg, S. Brosnan, et al., "Coherently coupled high power fiber arrays," Advanced Solid State Photonics, Santa Fe, USA, February pp. 1-4 (2004).
  5. J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
    [CrossRef]
  6. S. Sinha, C. Langrock, M. Digonnet, M. Fejer, and R. Byer, "Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator," Opt. Lett. 31, 347-349 (2006).
    [CrossRef] [PubMed]
  7. S. Sinha, K. Urbanek, D. Hum, M. Digonnet, M. Fejer, and R. Byer, "Linearly polarized, 3.35 W narrowlinewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow," Opt. Lett. 32, 1530-1532 (2007).
    [CrossRef] [PubMed]
  8. D. Gwo, "Ultra precision and reliable bonding method," (2001). US Patent 6,284,085.
  9. E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
    [CrossRef]
  10. P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
    [CrossRef]
  11. K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
    [CrossRef]
  12. J. Limpert, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "High-average-power millijoule fiber amplifier system," Lasers and Electro-Optics, 2002. CLEO’02. Technical Digest. pp. 591-592 (2002).
  13. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers," J. Opt. Soc. Am. 68, 103-109 (1978).
    [CrossRef]
  14. A. E. Siegman, "Lasers," Lasers, (University Science Books, 1986), Vol. 1283 pp, 1986.
  15. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
    [CrossRef]
  16. B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
    [CrossRef]
  17. S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
    [CrossRef]
  18. S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
    [CrossRef]
  19. J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
    [CrossRef]
  20. H. Armandula and P. Willems, "Fused silica fibers - silicate bonding research at Caltech," Proceedings of ALUK meeting ALUKGLA0017aAUG03, 1-17 (2003).
  21. B. Abott and R. Abott and R. Adhikari and A. Ageev and and B. Allen and R. Amin and S. Anderson and others, "Detector description and performance for the first coincidence observations between LIGO and GEO," Nucl, Inst. Meth. Phys. Research, A 517, 154-179 (2004).
    [CrossRef]

2007 (1)

2006 (3)

C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
[CrossRef]

S. Sinha, C. Langrock, M. Digonnet, M. Fejer, and R. Byer, "Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator," Opt. Lett. 31, 347-349 (2006).
[CrossRef] [PubMed]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

2005 (1)

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

2003 (3)

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

1996 (1)

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

1992 (1)

S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
[CrossRef]

1991 (1)

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

1979 (1)

S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
[CrossRef]

1978 (1)

1973 (1)

Alam, S.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Betzwieser, J.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Bloembergen, N.

Bogenstahl, J.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Brooks, C.

C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
[CrossRef]

Brown, I.

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

Bull, S.

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Byer, R.

Cagnoli, G.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Clarkson, W.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Crooks, D.

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Deshpande, A.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Di Teodoro, F.

C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
[CrossRef]

Digonnet, M.

Dybdal, K.

S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
[CrossRef]

Elliffe, E.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Faller, J.

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Feit, M.

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Fejer, M.

Gretarsson, A.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Grudinin, A.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Guild, D.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Hansen, S.

S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
[CrossRef]

Harry, G.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Herman, S.

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Hough, J.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Hum, D.

Jeong, Y.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Killow, C.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Kittelberger, S.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Langrock, C.

Larsen, C.

S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
[CrossRef]

Limpert, J.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Mackenzie, K.

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

Makimoto, T.

S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
[CrossRef]

Marcuse, D.

Meinhold, R.

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

Mortonson, M.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Nemoto, S.

S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
[CrossRef]

Nilsson, J.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Penn, S.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Ranchod, P.

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

Reid, S.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Robertson, D.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Roser, F.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Rowan, S.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Rubenchik, A.

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Sahu, J.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Saulson, P.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Schreiber, T.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Selvas, R.

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Shore, B.

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Sinha, S.

Smith, J.

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

Sneddon, P.

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

Stuart, B.

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Tunnermann, A.

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

Urbanek, K.

Ward, H.

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Brooks and F. Di Teodoro, "Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111,119 (2006).
[CrossRef]

Class. Quantum Grav. (3)

J. Smith, G. Harry, J. Betzwieser, A. Gretarsson, D. Guild, S. Kittelberger, M. Mortonson, S. Penn, and P. Saulson, "Mechanical loss associated with silicate bonding of fused silica," Class. Quantum Grav. 20, 5039-5047 (2003).
[CrossRef]

E. Elliffe, J. Bogenstahl, A. Deshpande, J. Hough, C. Killow, S. Reid, D. Robertson, S. Rowan, H. Ward, and G. Cagnoli, "Hydroxide-catalysis bonding for stable optical systems for space," Class. Quantum Grav. 22, S257-S267 (2005).
[CrossRef]

P. Sneddon, S. Bull, G. Cagnoli, D. Crooks, E. Elliffe, J. Faller, M. Fejer, J. Hough, and S. Rowan, "The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors," Class. Quantum Grav. 20, 5025-5037 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," IEEE J. Sel. Top. Quantum Electron. 12, 233-244 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Hansen, K. Dybdal, and C. Larsen, "Gain limit in erbium-doped fiber amplifiers due to internal Rayleigh backscattering," IEEE Photon. Technol. Lett. 4, 559-561 (1992).
[CrossRef]

J. Mater. Sci. (1)

K. Mackenzie, I. Brown, P. Ranchod, and R. Meinhold, "Silicate bonding of inorganic materials Part 1. Chemical reactions in sodium silicate at room temperature," J. Mater. Sci. 26, 763-768 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

S. Nemoto and T. Makimoto, "Analysis of splice loss in single-mode fibres using a Gaussian field approximation," Opt. Quantum Electron. 11, 447-457 (1979).
[CrossRef]

Phys. Rev. B (1)

B. Stuart,M. Feit, S. Herman, A. Rubenchik, B. Shore, andM. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996).
[CrossRef]

Proc. SPIE (1)

J. Nilsson, J. Sahu, Y. Jeong, W. Clarkson, R. Selvas, A. Grudinin, and S. Alam, "High Power Fiber Lasers: New Developments," Proc. SPIE 4974, 50-60 (2003).
[CrossRef]

Other (7)

D. Gwo, "Ultra precision and reliable bonding method," (2001). US Patent 6,284,085.

J. Limpert, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, "High-average-power millijoule fiber amplifier system," Lasers and Electro-Optics, 2002. CLEO’02. Technical Digest. pp. 591-592 (2002).

A. E. Siegman, "Lasers," Lasers, (University Science Books, 1986), Vol. 1283 pp, 1986.

M. Wickham, J. Anderegg, S. Brosnan, et al., "Coherently coupled high power fiber arrays," Advanced Solid State Photonics, Santa Fe, USA, February pp. 1-4 (2004).

H. Armandula and P. Willems, "Fused silica fibers - silicate bonding research at Caltech," Proceedings of ALUK meeting ALUKGLA0017aAUG03, 1-17 (2003).

B. Abott and R. Abott and R. Adhikari and A. Ageev and and B. Allen and R. Amin and S. Anderson and others, "Detector description and performance for the first coincidence observations between LIGO and GEO," Nucl, Inst. Meth. Phys. Research, A 517, 154-179 (2004).
[CrossRef]

V. Gapontsev, D. Gapontsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, "2 kW CW ytterbium fiber laser with record diffraction-limited brightness," Conference on Lasers and Electro-Optics Europe, CLEO/Europe (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Illustration of an optical flat bonded to the end of a fiber. The fiber core and the fiber cladding are made of fused silica. The jacket or buffer layer is made of either a polymer or fused silica. (b) Photograph of a double-clad fiber that is silicate bonded to a 1”-diameter optical flat. The fiber has an inner cladding of 250 μm and a low-index acrylate jacket with a diameter of 450 μm. The exterior of the last few centimeters of the fiber’s length is epoxied to the inner wall of a thick-walled capillary with a 475-μm inner diameter and a 6-mm outer diameter. The 6-mm diameter capillary is used to provide mechanical support to facilitate polishing and subsequent bonding.

Fig. 2.
Fig. 2.

Coreless end cap spliced to the gain fiber. The end cap is polished at an angle to suppress feedback. The polish angle and the angle of the free-space output beam with respect to the fiber axis are exaggerated for clarity.

Fig. 3.
Fig. 3.

Intensity reduction at silica-air interface for different fiber end treatments. The reduction is plotted for fibers with mode field diameters as shown. The operating wavelength is 1064 nm.

Fig. 4.
Fig. 4.

Experimental setup for measuring microsecond damage threshold of silicate bond. The laser system produces 100-mJ, 880-ns pulses at 1064 nm. AOM: acousto-optic modulator, HWP: half-wave plate, QWP: quarter-wave plate, PBS: polarizing beamsplitter, AWG: arbitrary waveform generator, HR: high reflector. Included is a photograph of the damage induced by the microsecond pulse in one of the samples. The diameter of the outer circle shown is approximately 420 μm.

Fig. 5.
Fig. 5.

Fraction of damaged samples with microsecond incident pulses for different (a) solution concentrations (b) solution volumes and (c) curing temperatures.

Fig. 6.
Fig. 6.

Median Q-switched damage threshold for silicate-bonded samples with different (a) solution concentrations (b) solution volumes and (c) curing temperatures.

Fig. 7.
Fig. 7.

(a) Coupling of a free-space off-axis mode-matched beam to a single-mode fiber. (b) Feedback from the Fresnel reflection in a fiber with an angled output facet.

Fig. 8.
Fig. 8.

Feedback resulting from angled facet. The feedback is plotted for fibers with mode field diameters of 6.8 μm (dotted, blue), 14.9 μm (solid, green) 44.9 μm (dashed, red). 8 degrees is the standard facet angle for angle-polished standard single-mode fibers. Plot (a) illustrates the feedback in dB. For clarity, plot (b) plots the negative logarithm of the negative logarithm of Equation (8).

Fig. 9.
Fig. 9.

Effective feedback for various fiber termination schemes for fiber with mode field diameters of 6.8 μm (solid), 15.9 μm (dotted) and 44.9 μm (dashed) versus inner cladding radius. The effective feedback curve for the 6.8 μm angle-cleaved fiber lies directly atop the curve for the 44.9-μm coreless end cap. The largest inner cladding radius plotted corresponds to a total fiber diameter of 1.4 μm.

Fig. 10.
Fig. 10.

Experimental setup to measure Fresnel reflections from silicate bonds. The pulse width of the 10-W Nd:YAG mode-locked laser is 3 ps, which is considerably shorter than the 20-ps resolution of our oscilloscope.

Fig. 11.
Fig. 11.

Traces of the reflections from various interfaces in silicate bonded samples. Plot (a) shows the traces on a linear scale for a sample with a measurable bond reflection (solid, black) and for a sample with a bond reflection below the detectable limit of the experimental setup (dotted, red). Plot (b) shows the trace for the sample with the undetectable bond reflection on a logarithmic scale.

Fig. 12.
Fig. 12.

Measured reflection off of silicate bond versus different (a) solution concentrations (b) solution volumes and (c) curing temperatures. The median reflection value for each group is plotted. The dotted line indicates the sensitivity of the measurement.

Fig. 13.
Fig. 13.

(a) Setup for measuring shear strength of silicate bonded samples. Weights from 5 kg to 25 kg were used to apply stress in our setup. (b) Photograph showing one of the silicate-bonded samples that fractured.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SiO 2 + OH + 2 H 2 O Si ( OH ) 5
2 Si ( OH ) 5 2 Si ( OH ) 4 + 2 ( OH ) ( OH ) 3 SiOSi ( OH ) 3 + H 2 O + 2 ( OH )
w = a ( 0.65 + 1.619 V 1.5 + 2.879 V 6 )
F dam = 22 Δ τ 0.4
T = 4 w fiber 2 w x w y ( w x 2 + w fiber 2 ) ( w y 2 + w fiber 2 ) e 2 π 2 w fiber 2 λ 2 [ w x 2 sin 2 θ x w x 2 + w fiber 2 + w y 2 sin 2 θ y w y 2 + w fiber 2 ]
T = e π 2 w 2 sin 2 θ λ 2
θ = sin 1 ( n sin ( 2 ϕ cleave ) )
F = R ( ϕ cleave ) e π 2 w 2 [ n sin ( 2 ϕ cleave ) ] 2 λ 2
R ( θ ) = η cos θ 1 n 2 sin 2 θ cos θ + 1 n 2 sin 2 θ 2 + ( 1 η ) 1 n 2 cos θ + 1 n 2 sin 2 θ 1 n 2 cos θ + 1 n 2 sin 2 θ 2
Δτ = 2 nL c

Metrics