Abstract

We demonstrate the use of plasmonic Bragg reflectors (PBRs) to enhance the extraordinary optical transmission (EOT) from an array of sub-wavelength apertures in a gold film. Arrays of partially milled lines and dimples are placed at the edges of an array of nano-holes in a gold film. These PBR structures, with half the pitch of the array, capture light scattered away from the array by Bragg reflection. By appropriate positioning of the PBR, the light is reflected in-phase with the EOT light and thereby doubles the EOT without shifting the wavelength of the resonant transmission peak. Furthermore, the PBR structures show strong polarization dependence that is also strongly dependent on the structure of the PBR, as explained in terms of scattering of the surface waves.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen “Enhanced light transmission through a single sub-wavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
    [CrossRef] [PubMed]
  4. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
    [CrossRef] [PubMed]
  5. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
    [CrossRef] [PubMed]
  6. P. Marthandam and R. Gordon “Plasmonic Bragg reflectors for sub-wavelength hole arrays in a metal film,” 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21–25 Oct. 2007.
  7. N. C. Lindquist, A. Lesuffleur, and S-H Oh “Periodic modulcation of extraordinary optical transmission through sub-wavelength hole arrays using surrounding Bragg Mirrors,” arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).
  8. R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
    [CrossRef] [PubMed]
  9. C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
    [CrossRef]
  10. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
    [CrossRef]

2005 (1)

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

2003 (4)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ahn, Y. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

Brun, M.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Chevalier, N.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

Drezet, A.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Durch, A. C.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen “Enhanced light transmission through a single sub-wavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Feldmann, J.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

P. Marthandam and R. Gordon “Plasmonic Bragg reflectors for sub-wavelength hole arrays in a metal film,” 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21–25 Oct. 2007.

Hohng, S. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Huant, S.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Hughes, M.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

Kim, D. S.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Kim, J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Koch, M.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Leathem, B.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

Lesuffleur, A.

N. C. Lindquist, A. Lesuffleur, and S-H Oh “Periodic modulcation of extraordinary optical transmission through sub-wavelength hole arrays using surrounding Bragg Mirrors,” arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).

Lezec, H. H.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen “Enhanced light transmission through a single sub-wavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

Lienau, C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Lindquist, N. C.

N. C. Lindquist, A. Lesuffleur, and S-H Oh “Periodic modulcation of extraordinary optical transmission through sub-wavelength hole arrays using surrounding Bragg Mirrors,” arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).

Linke, R. A.

Malyarchuk, V.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Mariette, H.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Marthandam, P.

P. Marthandam and R. Gordon “Plasmonic Bragg reflectors for sub-wavelength hole arrays in a metal film,” 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21–25 Oct. 2007.

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

Oh, S-H

N. C. Lindquist, A. Lesuffleur, and S-H Oh “Periodic modulcation of extraordinary optical transmission through sub-wavelength hole arrays using surrounding Bragg Mirrors,” arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).

Park, J. W.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Park, Q. H.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Pellerin, K. M

Sönnichsen, C.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Steininger, G.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Thio, T.

T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen “Enhanced light transmission through a single sub-wavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

von Plassen, G.

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Woehl, J. C.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yee, K. J.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Yoon, Y. C.

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

C. Sönnichsen, A. C. Durch, G. Steininger, M. Koch, G. von Plassen, and J. Feldmann “Launching surface plasmons into nanoholes in metal films,” Appl. Phys. Lett. 76, 140–142 (2000).
[CrossRef]

Europhys. Lett. (1)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl, and S. Huant “Remote optical addressing of single nano-objects,” Europhys. Lett. 64, 634–640, (2003).
[CrossRef]

Nano Lett. (1)

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh, and A. G. Brolo “Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film,” Nano Lett. 5, 1243–1246 (2005).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen “Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401-1–167401-4 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno “Multiple paths to enhance optical transmission through a single sub-wavelength slit,” Phys. Rev. Lett. 90, 213901-1–213901-4 (2003).
[CrossRef] [PubMed]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau “Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901-1–143901-4 (2003).
[CrossRef] [PubMed]

Other (2)

P. Marthandam and R. Gordon “Plasmonic Bragg reflectors for sub-wavelength hole arrays in a metal film,” 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21–25 Oct. 2007.

N. C. Lindquist, A. Lesuffleur, and S-H Oh “Periodic modulcation of extraordinary optical transmission through sub-wavelength hole arrays using surrounding Bragg Mirrors,” arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning Electron Micrographs of arrays. (a) 15 μm×30 μm array of circular holes of diameter 150 nm, and periodicity 800 nm. The array is flanked by dimple PBRs with periodicity of 400 nm on either side in the x-direction. The arrow indicates vertical polarization along the y-direction. (b) Same as (a) but flanked by partially milled lines of width 150 nm, and periodicity 400 nm. The scale bars correspond to 2 μm.

Fig. 2.
Fig. 2.

Normal transmission intensity spectra of arrays with 800 nm periodicity, with and without PBRs for horizontal polarization. Both the dimpled and lined PBR show enhanced EOT. The measurement of the (1,0) EOT peak is shown with arrows.

Fig. 3.
Fig. 3.

Normal transmission intensity spectra of arrays with 800 nm periodicity, with and without PBRs for vertical polarization.

Fig. 4.
Fig. 4.

Transmission intensity of arrays with 800 nm periodicity with PBRs at different separations from the array, at the 867 nm resonance. The insets are scanning electron microscope images of the structures with PBRs at 400 nm and 800 nm from the array.

Fig. 5.
Fig. 5.

Normal transmission spectra of 15×15 μm2 array of 800 nm periodicity without and with PBRs on all four sides. Inset shows a scanning electron micrograph of the corner of an array surrounded by reflectors on all four sides.

Metrics