Abstract

We demonstrate the use of plasmonic Bragg reflectors (PBRs) to enhance the extraordinary optical transmission (EOT) from an array of sub-wavelength apertures in a gold film. Arrays of partially milled lines and dimples are placed at the edges of an array of nano-holes in a gold film. These PBR structures, with half the pitch of the array, capture light scattered away from the array by Bragg reflection. By appropriate positioning of the PBR, the light is reflected in-phase with the EOT light and thereby doubles the EOT without shifting the wavelength of the resonant transmission peak. Furthermore, the PBR structures show strong polarization dependence that is also strongly dependent on the structure of the PBR, as explained in terms of scattering of the surface waves.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec and T. W. Ebbesen "Enhanced light transmission through a single sub-wavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401-1-167401-4 (2003).
    [CrossRef] [PubMed]
  4. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martín-Moreno "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901-1-213901-4 (2003).
    [CrossRef] [PubMed]
  5. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park and C. Lienau "Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures," Phys. Rev. Lett. 91, 143901-1-143901-4 (2003).
    [CrossRef] [PubMed]
  6. P. Marthandam and R. Gordon "Plasmonic Bragg reflectors for subwavelength hole arrays in a metal film," 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21-25 Oct. 2007.
  7. N. C. Lindquist, A. Lesuffleur and S-H Oh "Periodic modulcation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg Mirrors," arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).
  8. R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
    [CrossRef] [PubMed]
  9. C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
    [CrossRef]
  10. M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
    [CrossRef]

2005 (1)

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

2001 (1)

2000 (1)

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Brolo, A. G.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Brun, M.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Chevalier, N.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Drezet, A.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Durch, A. C.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Ebbesen, T. W.

T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec and T. W. Ebbesen "Enhanced light transmission through a single sub-wavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Feldmann, J.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Gordon, R.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Huant, S.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Hughes, M.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Koch, M.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Leathem, B.

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Lezec, H. H.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Lezec, H. J.

Linke, R. A.

Mariette, H.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Pellerin, K. M

Sönnichsen, C.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Steininger, G.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Thio, T.

T. Thio, K. M Pellerin, R. A. Linke, H. J. Lezec and T. W. Ebbesen "Enhanced light transmission through a single sub-wavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
[CrossRef]

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

von Plassen, G.

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Woehl, J. C.

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

C. Sönnichsen, A. C. Durch, G. Steininger, M.  Koch, G.  von Plassen and J.  Feldmann "Launching surface plasmons into nanoholes in metal films," Appl. Phys. Lett. 76, 140-142 (2000).
[CrossRef]

Europhys. Lett. (1)

M. Brun, A. Drezet, H. Mariette, N. Chevalier, J. C. Woehl and S. Huant "Remote optical addressing of single nano-objects," Europhys. Lett. 64, 634-640, (2003).
[CrossRef]

Nano Lett. (1)

R. Gordon, M. Hughes, B. Leathem, K. L. Kavanagh and A. G. Brolo "Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film," Nano Lett. 5, 1243-1246 (2005).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. H. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Opt. Lett. (1)

Other (5)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron and T. W. Ebbesen "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401-1-167401-4 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen and L. Martín-Moreno "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901-1-213901-4 (2003).
[CrossRef] [PubMed]

D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park and C. Lienau "Microscopic origin of surface plasmon radiation in plasmonic band-gap nanostructures," Phys. Rev. Lett. 91, 143901-1-143901-4 (2003).
[CrossRef] [PubMed]

P. Marthandam and R. Gordon "Plasmonic Bragg reflectors for subwavelength hole arrays in a metal film," 20th Annual Meeting of IEEE-LEOS, Lake Buena Vista, Florida, 21-25 Oct. 2007.

N. C. Lindquist, A. Lesuffleur and S-H Oh "Periodic modulcation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg Mirrors," arXiv preprint Server: http://arxiv.org/abs/0708.1314 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scanning Electron Micrographs of arrays. (a) 15 μm×30 μm array of circular holes of diameter 150 nm, and periodicity 800 nm. The array is flanked by dimple PBRs with periodicity of 400 nm on either side in the x-direction. The arrow indicates vertical polarization along the y-direction. (b) Same as (a) but flanked by partially milled lines of width 150 nm, and periodicity 400 nm. The scale bars correspond to 2 μm.

Fig. 2.
Fig. 2.

Normal transmission intensity spectra of arrays with 800 nm periodicity, with and without PBRs for horizontal polarization. Both the dimpled and lined PBR show enhanced EOT. The measurement of the (1,0) EOT peak is shown with arrows.

Fig. 3.
Fig. 3.

Normal transmission intensity spectra of arrays with 800 nm periodicity, with and without PBRs for vertical polarization.

Fig. 4.
Fig. 4.

Transmission intensity of arrays with 800 nm periodicity with PBRs at different separations from the array, at the 867 nm resonance. The insets are scanning electron microscope images of the structures with PBRs at 400 nm and 800 nm from the array.

Fig. 5.
Fig. 5.

Normal transmission spectra of 15×15 μm2 array of 800 nm periodicity without and with PBRs on all four sides. Inset shows a scanning electron micrograph of the corner of an array surrounded by reflectors on all four sides.

Metrics