Abstract

Wavelength tunability of a microcavity solid-state dye laser is modeled and demonstrated by simulations making use of the finite element method. We investigate the application of two phenomena, thermoelastic expansion of the microcavity material and thermo-induced change of the refractive index, to tune the microcavity mode frequencies by a variation of the effective optical path. An optimized size of the laser microcavity is defined depending on the operation wavelength bandwidth and the glass transition temperature of the gain material.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  3. P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).
    [CrossRef]
  4. B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
    [CrossRef] [PubMed]
  5. F. J. Duarte, ed., Tunable Lasers Handbook (Elsevier, Amsterdam, 1995).
  6. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
    [CrossRef] [PubMed]
  7. J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
    [CrossRef]
  8. A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
    [CrossRef]
  9. F. Duarte and R. O. James, "Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media," Opt. Lett. 28, 2088-2090 (2003).
    [CrossRef] [PubMed]
  10. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
    [CrossRef]
  11. M. B. Christiansen, M. Schøler, and A. Kristensen, "Integration of active and passive polymer optics," Opt. Express 15, 3931-3939 (2007).
    [CrossRef] [PubMed]
  12. http://www.comsol.com.
  13. B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
    [CrossRef]
  14. M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
    [CrossRef]
  15. F. P. Schafer, ed., Dye Lasers (Springer, Berlin, 1977).
  16. F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, "Measurements of ∂n/∂T in solid-state dye-laser gain media," Appl. Opt. 39, 6522-6523 (2000).
  17. http://www.microchem.com/products/su_eight.htm.
  18. S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
    [CrossRef]
  19. E. Hecht, Optics, 4th edition (Addison Wesley, San Francisco, 2002).
  20. http://memscyclopedia.org/>.
  21. http://polymer.nims.go.jp/polyinfo_top_eng.htm>.
  22. R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948).
    [CrossRef]

2007

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007).
[CrossRef] [PubMed]

M. B. Christiansen, M. Schøler, and A. Kristensen, "Integration of active and passive polymer optics," Opt. Express 15, 3931-3939 (2007).
[CrossRef] [PubMed]

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

2006

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
[CrossRef]

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
[CrossRef]

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

2004

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

2003

2002

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

2000

1948

R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948).
[CrossRef]

Adams, S.

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

Aikio, J.

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

Alajoki, T.

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

Balslev, S.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
[CrossRef]

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
[CrossRef]

Bilenberg, B.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
[CrossRef]

Brauer, G. M.

R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948).
[CrossRef]

Christiansen, M. B.

Costela, A.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, "Measurements of ∂n/∂T in solid-state dye-laser gain media," Appl. Opt. 39, 6522-6523 (2000).

Craighead, H.

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

del Agua, D.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Duarte, F.

Duarte, F. J.

Eggleton, B.J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Ellisman, M.

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

Friberg, A. T.

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

Garcia, O.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, "Measurements of ∂n/∂T in solid-state dye-laser gain media," Appl. Opt. 39, 6522-6523 (2000).

Gersborg-Hansen, M.

Giepmans, B. N. G.

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

Hansen-Gersborg, M.

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
[CrossRef]

Howe, D.

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

James, R.O.

Karioja, P.

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

Kataja, K.

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

Kristensen, A.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Mortensen, N.A.

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
[CrossRef]

Popov, S.

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

Rasmussen, T.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
[CrossRef]

Ricciardi, S.

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

Sastre, R.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

F. J. Duarte, A. Costela, I. Garcia-Moreno, and R. Sastre, "Measurements of ∂n/∂T in solid-state dye-laser gain media," Appl. Opt. 39, 6522-6523 (2000).

Schøler, M.

Sergeyev, S.

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

Tsien, R.

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

Wiley, R. H.

R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948).
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, and R. Sastre, "New organic-inorganic hybrid matrices doped with rhodamine 6G as solid-state dye lasers," Appl. Phys. B 75, 827-833 (2002).
[CrossRef]

Appl. Phys. Lett.

A. Costela, I. Garcia-Moreno, D. del Agua, O. Garcia, and R. Sastre, "Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers," Appl. Phys. Lett. 85, 2160-2162 (2004).
[CrossRef]

J. Appl. Phys.

B. Bilenberg, T. Rasmussen, S. Balslev, and A. Kristensen, "Real-time tunability of chip-based light source enabled by microfluidic mixing," J. Appl. Phys. 99, 23102 (2006).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ.

S. Popov, S. Ricciardi, A. T. Friberg, and S. Sergeyev, "Mode suppression in a microcavity solid-state dye laser," J. Eur. Opt. Soc. Rapid Publ. 2, 07023 (2007).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Hansen-Gersborg, S. Balslev, and N.A. Mortensen, "Finite-element simulation of cavity modes in a microfluidic dye ring laser," J. Opt. A, Pure Appl. Opt. 8, 17-20 (2006).
[CrossRef]

J. Polymer Sci.

R. H. Wiley and G. M. Brauer, "Refractometric determination of second-order transition temperatures in polymers. II. Some acrylic, vinyl halide, and styrene polymers," J. Polymer Sci. 3, 455-461 (1948).
[CrossRef]

Nat. Photonics

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature

H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

J. Aikio, K. Kataja, T. Alajoki, P. Karioja, and D. Howe, "Extremely short external cavity lasers: the use of wavelength tuning effects in near field sensing," Proc. SPIE 4640, 235-245 (2002).
[CrossRef]

Science

B. N. G. Giepmans, S. Adams, M. Ellisman, and R. Tsien, "The fluorescent toolbox for assessing protein location and function," Science 312, 217-224 (2006).
[CrossRef] [PubMed]

Other

F. J. Duarte, ed., Tunable Lasers Handbook (Elsevier, Amsterdam, 1995).

P. N. Prasad, Introduction to Biophotonics (Wiley, New York, 2003).
[CrossRef]

http://www.comsol.com.

F. P. Schafer, ed., Dye Lasers (Springer, Berlin, 1977).

E. Hecht, Optics, 4th edition (Addison Wesley, San Francisco, 2002).

http://memscyclopedia.org/>.

http://polymer.nims.go.jp/polyinfo_top_eng.htm>.

http://www.microchem.com/products/su_eight.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Layout of the microcavity solid-state dye laser illustrating the polymeric gain medium containing dye molecules (dots in the central slab) and the effective optical paths of the resonant cavity modes (dashed lines).

Fig. 2.
Fig. 2.

Resonance mode pattern demonstrating the optimal placing of the copper rods that provide heating of the microcavity to realize wavelength tuning. Red color corresponds to positive amplitude of the electric field, blue to negative, and green represents zero.

Fig. 3.
Fig. 3.

Relative distortion (color coded) of the microcavity geometry caused by thermal expansion of the material. The temperature increase is 100 K and the scale shows the displacement in μm. The copper rods are fixed in their positions when solving for thermally induced strain in solid materials.

Fig. 4.
Fig. 4.

Wavelength shift of a resonant mode (m = 28) when the microcavity operation temperature in increased by 50 K and 100 K above the room temperature.

Fig. 5.
Fig. 5.

Dependence of optimal microcavity size on the change of the operation temperature. The optimized size is designed to provide a 10 nm (blue solid line) or 20 nm (red dashed line, corresponding to cavity FSR) wavelength tunability.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ m = L eff m φ 2 π ,
L eff = 2 ( n d p l d p + n pol l pol ) .
FSR = δλ = λ m 2 L eff
Δ l l = α Δ T ,
d n pol dT = d n d p dT = 2.92 10 4 K 1 ,
Δ L eff = ( 2.4 d n pol dT + 1.9 α pol ) l pol Δ T .
Δ λ = d λ m d L eff Δ L eff = Δ L eff m φ 2 π ,
Δ T l pol = K Δ λ FSR ,
K = λ m 2.4 ( d n pol dT ) + 1.9 α pol .

Metrics