Abstract

For the first time to the best of our knowledge, a simultaneous 10.6 μm CO2 laser pulse has been used to enhance the Laser Induced Breakdown Spectroscopy (LIBS) emission from a 1.064 μm Nd:YAG laser induced plasma on a hard target. The enhancement factor was on the order of 25 to 300 times, depending upon the emission lines observed. For an alumina ceramic substrate the Al emission lines at 308 nm and Fe impurity line at 278 nm showed an increase of 60× and 119×, respectively. The output energy of the Nd:YAG laser was 50 mJ/pulse focused to a 1 mm diameter spot to produce breakdown. The CO2 laser pulse had a similar energy density of 40 mJ/mm2. Timing overlap of the two laser pulses within 1 microsecond was important for enhancement to be observed. An observed feature was the differential enhancement between different elemental species and also between different ionization states, which may be helpful in the application of LIBS for multi-element analysis.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
    [CrossRef]
  2. L. J. Radziemski and D. A. Cremers, "Spectrochemical analysis using laser plasma excitation," L. J. Radziemski and D. A. Cremers, eds., in Laser-Induced Plasma: Physical, Chemical and Biological Applications, (Marcel Dekker, New York, 1989).
  3. A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy, (Cambridge University Press 2006).
    [CrossRef]
  4. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
    [CrossRef]
  5. D. N. Stratis, K. L. Eland, and S. M. Angel, "Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS," Appl. Spectrosc. 54, 1719 (2000).
    [CrossRef]
  6. J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, "Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 65 (2006).
    [CrossRef] [PubMed]
  7. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, Jr., J. C. Carter, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099 (2003).
    [CrossRef] [PubMed]
  8. J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
    [CrossRef]
  9. V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
    [CrossRef]
  10. P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
    [CrossRef]
  11. K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
    [CrossRef]
  12. S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000).
    [CrossRef] [PubMed]
  13. CRC Handbook of Chemistry and Physics, Table of Atomic Spectra (2004).
  14. V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
    [CrossRef]
  15. A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
    [CrossRef]
  16. J. S. Townsend, Electricity in Gases, (Oxford University Press, New York, 1914); reprinted Wexford College Press (2007).
  17. J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
    [CrossRef]
  18. N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
    [CrossRef]

2007 (2)

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

2006 (3)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

J. Scaffidi, W. Pearman, J. C. Carter, and S. M. Angel, "Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy," Appl. Spectrosc. 60, 65 (2006).
[CrossRef] [PubMed]

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

2005 (2)

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
[CrossRef]

2003 (1)

2002 (1)

K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
[CrossRef]

2000 (2)

S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000).
[CrossRef] [PubMed]

D. N. Stratis, K. L. Eland, and S. M. Angel, "Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS," Appl. Spectrosc. 54, 1719 (2000).
[CrossRef]

1999 (1)

P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
[CrossRef]

1997 (2)

K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
[CrossRef]

Angel, S. M.

Babushok, V. I.

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

Borra, J.P.

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

Carter, J. C.

Chan, S. Y.

S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000).
[CrossRef] [PubMed]

Chekhov, D. I.

A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
[CrossRef]

Chen, S.

P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
[CrossRef]

Cheung, N. H.

S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000).
[CrossRef] [PubMed]

Colston, B. W.

DeLucia, F.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

Eland, K. L.

Gonzalez, J.

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Goode, S. R.

Gottfried, J. L.

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

Jidenko, N.

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

Jimenez, C.

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

Laserna, J. J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Lee, Y.

K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
[CrossRef]

Lee, Y. I.

K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

Leonov, A. G.

A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
[CrossRef]

Liu, C. Y.

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Mao, X. L.

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Massines, F.

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Mukherjee, P.

P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
[CrossRef]

Munson, C. A.

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Pearman, W.

Pender, J.

Rahel, J.

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

Rai, V. N.

V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
[CrossRef]

Rose, J.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Russo, R. E.

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Scaffidi, J.

Singh, J. P.

V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
[CrossRef]

Sira, M.

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

Sneddon, J.

K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

Song, K.

K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

Stahel, P.

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

Staristin, A. N.

A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
[CrossRef]

Stratis, D. N.

Trunec, D.

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

Walters, R. A.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Whitehouse, A. I.

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

Witanachchi, S.

P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
[CrossRef]

Yoo, J. H.

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Yueh, F. Y.

V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
[CrossRef]

Anal. Chem. (1)

S. Y. Chan and N. H. Cheung, "Analysis of solids by laser ablation and resonance-enhanced laser-induced spectroscopy," Anal. Chem. 72, 2087 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Mukherjee, S. Chen, and S. Witanachchi, "Effect of initial plasma geometry and temperature on dynamic expansion in dual-laser ablation," Appl. Phys. Lett. 74, 1546 (1999).
[CrossRef]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (2)

K. Song, Y. I. Lee, and J. Sneddon, "Applications of laser-induced breakdown spectrometry," Appl. Spectrosc. Rev. 32, 183-235 (1997).
[CrossRef]

K. Song, Y. Lee, and J. Sneddon, "Recent developments in instrumentation for laser induced breakdown spectroscopy," Appl. Spectrosc. Rev. 37, 89 (2002).
[CrossRef]

Contrib. Plasma Phys. (1)

J. Rahel, M. Sira, P. Stahel, and D. Trunec, "The transition between different discharge regimes in atmospheric pressure air barrier discharge," Contrib. Plasma Phys. 47, 34 (2007).
[CrossRef]

J. Anal. At. Spectrom. (1)

C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLuciaJr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced-breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55 (2006).
[CrossRef]

J. Exp. Theor. Phy. (1)

A. G. Leonov, D. I. Chekhov, and A. N. Staristin, "Mechanisms of resonant laser ionization," J. Exp. Theor. Phy. 84, 703 (1997).
[CrossRef]

J. of Phys. (1)

V. N. Rai, F. Y. Yueh, and J. P. Singh, "Optical emission from laser-produced chromium and magnesium plasma under the effect of two sequential laser pulses," Pramana-J. of Phys. 65, 1075 (2005).
[CrossRef]

J. Phys. D (1)

N. Jidenko, C. Jimenez, F. Massines, and J.P. Borra, "Nano-particle size-dependent charging and electro-deposition in dielectric barrier discharges at atmospheric pressure for thin SiOx film deposition," J. Phys. D 40, 4155 (2007).
[CrossRef]

Spectrochim. Acta. (1)

J. Gonzalez, C. Y. Liu, J. H. Yoo, X. L. Mao, and R. E. Russo, "Double-pulse laser ablation ICP-MS and LIBS," Spectrochim. Acta. 60, 27 (2005).
[CrossRef]

Spectrochimica Acta Part B-Atomic Spectrosc. (1)

V. I. Babushok, F. C. DeLuciaJr., J. L. Gottfried, C. A. Munson, and A. W. Miziolek, "Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement," Spectrochimica Acta Part B-Atomic Spectrosc. 61, 999 (2006).
[CrossRef]

Other (4)

L. J. Radziemski and D. A. Cremers, "Spectrochemical analysis using laser plasma excitation," L. J. Radziemski and D. A. Cremers, eds., in Laser-Induced Plasma: Physical, Chemical and Biological Applications, (Marcel Dekker, New York, 1989).

A. Miziolek, V. Palleschi, and I. Schechter, eds., Laser Induced Breakdown Spectroscopy, (Cambridge University Press 2006).
[CrossRef]

J. S. Townsend, Electricity in Gases, (Oxford University Press, New York, 1914); reprinted Wexford College Press (2007).

CRC Handbook of Chemistry and Physics, Table of Atomic Spectra (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of two laser LIBS system for CO2 laser enhancement of Nd:YAG induced LIBS plasma emission

Fig. 2.
Fig. 2.

LIBS signal from ceramic alumina target for Nd:YAG laser initiated plasma; emission lines are tentatively identified and listed in nm.

Fig. 3.
Fig. 3.

LIBS emission signal for Nd:YAG laser initiated plasma and CO2 laser enhancement

Fig. 4.
Fig. 4.

LIBS signal for several emission lines (listed in nm) as a function of Nd:YAG laser energy (using Nd:YAG laser alone).

Fig. 5.
Fig. 5.

LIBS enhancement ratio for Al LIBS lines (listed in nm) as a function of CO2 laser intensity.

Fig. 6.
Fig. 6.

LIBS enhancement ratio for Al II LIBS lines (listed in nm) as a function of CO2 laser intensity.

Fig. 7.
Fig. 7.

LIBS enhancement ratio for Mg II LIBS lines (listed in nm) as a function of CO2 laser intensity.

Fig. 8.
Fig. 8.

Oscilloscope trace of Si detector (upper trace: Nd:YAG and plasma total emission) and CO2 laser pulse (lower trace) when CO2 laser leads Nd:YAG laser pulse. No enhancement in the LIBS emission was observed.

Fig. 9.
Fig. 9.

Trace of Si detector and CO2 detector for optimal overlap and LIBS enhancement.

Fig. 10.
Fig. 10.

Amplitude of LIBS emission lines (listed in nm) as a function of delay between ND:YAG and CO2 laser pulses

Metrics